

IXFN50N120SK

Terms & Conditions of us

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend to perform joint risk and quality assessments:

- the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, test conditions and dimensions.

© 2016 IXYS All rights reserved

MOSFET					Rating	S	
Symbol	Definitions	Conditions		min.	typ.	max.	
V _{DS(max)}	max drain source voltage					1200	V
V _{GS(max)} V _{GS}	max transient gate source voltage continous gate source voltage	recommended operational value		-10 -5		+25 +20	V V
I _{D25} I _{D80} I _{D100}	drain current	$\begin{cases} V_{GS} = 20 V \end{cases}$	$\begin{array}{rl} T_{\rm c} = & 25^{\circ}{\rm C} \\ T_{\rm c} = & 80^{\circ}{\rm C} \\ T_{\rm c} = & 100^{\circ}{\rm C} \end{array}$			48 38 33	A A A
R _{DSon}	static drain source on resistance	$ \ \ \Big\} I_{\rm D} = 40 {\rm A}; V_{\rm GS} = 20 {\rm V} \ $	$\begin{array}{l} T_{\rm VJ}=~25^{\circ}C\\ T_{\rm VJ}=~150^{\circ}C \end{array}$		40 84	52	mΩ mΩ
V _{GS(th)}	gate threshold voltage	$\int I_{D} = 10 \text{ mA; } V_{GS} = V_{DS}$	$\begin{array}{l} T_{\rm VJ}=~25^{\circ}C\\ T_{\rm VJ}=~150^{\circ}C \end{array}$	2.4	2.8 2.0	tbd	V V
I _{DSS}	drain source leakage current	$V_{DS} = 1200 \text{ V}; V_{GS} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$		1	100	μA
I _{GSS}	gate source leakage current	$V_{\rm DS} = 0 \text{ V}; V_{\rm GS} = 20 \text{ V}$	$T_{VJ} = 25^{\circ}C$			0.25	μA
R _G	internal gate resistance	$f = 1 \text{ MHz}, V_{AC} = 25 \text{ mV}$			1.8		Ω
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer (Miller) capacitance	$ \label{eq:V_DS} \left. \begin{array}{l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	T _{vj} = 25°C		1895 150 10		pF pF pF
Q _g Q _{gs} Q _{gd}	total gate charge gate source charge gate drain (Miller) charge	$ \ \ \Big\} V_{\text{DS}} = 800 \text{ V}; \text{ I}_{\text{D}} = 40 \text{ A}; \text{ V}_{\text{GS}} = -5/20 $	$V T_{vJ} = 25^{\circ}C$		115 28 37		nC nC nC
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	Inductive switching Free Wheeling Diode: Body Diode $V_{DS} = 800 \text{ V}; I_D = 40 \text{ A}$ $V_{GS} = -5/20 \text{ V}; R_G = 2.5 \Omega \text{ (external)}$	4				ns ns ns mJ mJ
$f R_{thJC} \ R_{thJH}$	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound; IXYS tes	t setup		0.72	0.6	K/W K/W

Source-Drain Diode

Source-Drain Diode				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	
I _{S25} I _{S80}	continuous source current	$V_{GS} = -5 V$	$\begin{array}{rl} T_{\rm C} = & 25^{\circ}{\rm C} \\ T_{\rm C} = & 80^{\circ}{\rm C} \end{array}$				A A
V _{SD}	forward voltage drop	$I_{\rm F} = 20 \text{ A}; V_{\rm GS} = -5 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		3.3 3.1		V V
t _{rr} Q _{RM} I _{RM}	reverse recovery time reverse recovery charge (intrinsic diode) max. reverse recovery current	$V_{GS} = -5 \text{ V}; \text{ I}_F = 40 \text{ A}$ $V_R = 800 \text{ V}; -di_F/dt = 1000 \text{ A}/\mu\text{s}$	$T_{vJ} = 25^{\circ}C$		54 285 15		ns nC A

Note:

When using SiC Body Diode the maximum recommended $V_{GS} = -5V$

IXYS reserves the right to change limits, test conditions and dimensions.

Package SOT-227B (minibloc)

					Ratir	ngs	
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					Α
T _{stg}	storage temperature			-40		150	°C
T _{op}	operation temperature			-40		150	°C
T _{vj}	virtual junction temperature			-40		175	°C
Weight					30		g
M _D	mounting torque			1.1		1.5	Nm
Μ _τ	terminal torque			1.1		1.5	Nm
d _{Spp/App}	ereenen distance en surface	Latriking distance through air	terminal to backside	10.5 / 3.2			mm
d _{Spb/Apb}	creepage distance on surface	i striking distance through air	terminal to terminal	8.6 / 6.8			mm
VISOL	isolation voltage	I _{ISOL} ≤ 1 mA; 50/60 Hz,	t = 1 sec.	3000			V
			t = 1 minute	2500			V

IXYS reserves the right to change limits, test conditions and dimensions.

Outlines SOT-227B (minibloc)

S (4)

Dim.	Millimeter		Inches		
Dim.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
B	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
E	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
К	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
Μ	12.50	13.10	0.492	0.516	
Ν	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

IXYS reserves the right to change limits, test conditions and dimensions.