
ISL29125 RGB Light Sensor Hookup Guide

Introduction
If you’ve had ideas for a project that depend on the ability to sense different
spectra of visible light and react based on those measurements, the
ISL29125 breakout board may be just what you need.

The ISL29125 breakout board, as seen above, in combination with our
Arduino library makes it very easy to sense and record the light intensity of
the general red, green, and blue spectra of visible light. You can use these
color-intensity readings in a variety of projects: log them to find patterns or
use them to creatively make control decisions.

This tutorial will show you the hardware side of things – an overview of the
breakout board and how to hook it up to an Arduino. Then we’ll cover the
firmware/programming half – how to start getting readings from the sensor
as quickly as possible using our library. From there you can continue with
your project, or learn about the more advanced uses of this chip. In the last
section we’ll show you how to configure the chip for more specific needs, as
well as how to use interrupt-driven methods to alert you of changes in
sensor readings.

Required Materials

• ISL29125 Breakout Board
• ISL29125 Arduino Library
• Arduino Uno (or Arduino Compatible Board)
• Logic Level Converter (not necessary if using a 3.3V Arduino

Compatible)

Page 1 of 8

Suggested Reading

• Installing an Arduino Library
• Logic Levels
• Using the Logic Level Converter Board
• Serial Communication via I C Protocol
• Using Github

Hardware Overview
The ISL29125 Breakout Board is quite simple in terms of parts. It consists
of the sensor chip itself, two decoupling capacitors and 3 pull-up resistors
for the I C and interrupt lines.

The main header is what allows you to interface with the board. Simply
connect power (3.3V) and ground to the designated vias. Connect the I C
lines – SDA and SCL – to the corresponding pins on your microcontroller. If
desired, you can also connect the !INT pin to a interrupt pin of your
microcontroller. Make sure you use 3.3V for power and logic. The chip is
not 5V tolerant and will be damaged if you apply 5V to power or any of the
inputs. Use a logic level converter if you’re controlling the chip with a 5V
microcontroller.

If you want to disable the on-board 10kΩ I C pullup resistors – in case you
want to use those built into your microcontroller or other external pull-ups –
simply cut the two traces between the three pads on the backside of the
board. If you decide you want the pull-ups later, you can always solder the
pads back together.

Now that you’re familiar with the board, let’s get it up and running.

2

2

2

2

Page 2 of 8

Reading RGB Values

Hardware Hookup

Before we dive into the code, we need to connect the Arduino Uno to the
ISL29125 breakout board. Connect the 3.3V and GND on the Arduino to
the 3.3V pin on the breakout board. Connect SDA on the breakout to A4 on
the Uno, SCL to A5 on the Uno. If you’re using the Uno or any 5V Arduino,
you’ll need a logic level converter between SDA/SCL on the breakout and
A4/A5 on the Uno. If you don’t know how to use the converter, this logic
level conversion tutorial explains how.

Now that the hardware is ready, let’s move onto the software.

Install the Library

Now that the hardware is set up, you’ll need to install the Arduino Library for
the ISL29125. Click here to download the library. Or you can grab the most
up-to-date version of the code on GitHub.

To install the library unzip and place the library folder in the “libraries” folder
in your Arduino sketchbook. For more help installing the library, refer to the
Arduino Library Installation Guide.

Basic Example Sketch

In the Arduino IDE, go to File > Examples >
SparkFun_ISL29125_Arduino_Library > ISL29125Basics. This will load
a simple example that will get you quickly reading light intensity levels in the
red, green, and blue spectra. Let’s dive into the example sketch.

Setup

To setup the example we simply declare a sensor object and run a basic
initialization function that will communicate with the sensor. The init()
fuction will command the ISL29125 to start taking readings for red, green,
and blue. In addition to calling RGB_sensor.init() , the setup() function
also initiates serial communication so we can send information from the
sensor to our Serial Monitor (make sure to set your Serial Monitor to
115200 baud).

// Declare sensor object
SFE_ISL29125 RGB_sensor;

void setup()
{
// Initialize serial communication

 Serial.begin(115200);

// Initialize the ISL29125 with simple configuration so it s
tarts sampling
if (RGB_sensor.init())

 {
 Serial.println("Sensor Initialization Successful\n\r");
 }
}

Reading Sensor Values

Now how do we actually acquire those sensor readings? Well that’s up
next. The sensor readings are stored as 16-bit unsigned integers. Using the
library we can call our sensor objects functions readRed() , readGreen() ,
and readBlue() to get the light intensity readings for red, green, and blue

Page 3 of 8

respectively. Each time through loop() , we take these readings, print
them to the Serial Monitor, then wait a couple seconds. Here’s the code for
this functionality:

// Read sensor values for each color and print them to serial
monitor
void loop()
{
// Read sensor values (16 bit integers)
unsigned int red = RGB_sensor.readRed();
unsigned int green = RGB_sensor.readGreen();
unsigned int blue = RGB_sensor.readBlue();

// Print out readings, change HEX to DEC if you prefer decim
al output
 Serial.print("Red: "); Serial.println(red,HEX);
 Serial.print("Green: "); Serial.println(green,HEX);
 Serial.print("Blue: "); Serial.println(blue,HEX);
 Serial.println();
delay(2000);

}

If you simply want sensor readings to log, view, or use in a further
calculation for your project, this is all you really need to know. However, if
you’d like to know more about the gritty details of sensor configuration – or
how to trigger a processor interrupt based on a specific sensor reading –
continue to the advanced section.

Advanced
Going beyond basic readings, the ISL29125 allows you to tailor the
configuration of the sensor to custom-fit your application’s specific needs. In
the library there is a config() function that takes three arguments – one
for each of the sensor’s configuration registers. That will be our workhorse
for customizing the ISL29125’s operation.

Configuring Active Channels and Interrupts

Let’s take a look at the “ISL29125_interrupts” example, which demonstrates
how to configure interrupts. This example is configured in a way that the
sensor only reads red values and triggers a processor interrupt when the
red sensor reading is above a specified threshold.

Before we can use the interrupts, we have to configure them – set them up.
Within the setup() function, after initializing the sensor as we did in the
basic example, we configure the sensor with this function call:

RGB_sensor.config(CFG1_MODE_R | CFG1_10KLUX, CFG2_IR_ADJUST_HI
GH, CFG3_R_INT | CFG3_INT_PRST8);

We use the first configuration register – set with the first argument – to
define the sampling mode. In this case, we only want the sensor to collect
data in the red spectrum, so it doesn’t waste time sampling for blue and
green. The mode we used in the basic example (set up behind the scenes)
was CFG1_MODE_RGB , which collects data for all three colors. The mode can
be set to any individual color, combination of two colors, or even
powerdown and standby modes.

In addition to setting the channels sampled, the first parameter is also used
to sets the light intensity. We set the light intensity scale to 10k lux, which is
best for normal light levels. There’s only one other option for light intensity –
375 lux – which is better for very dark environments. This register can also

Page 4 of 8

be used to change the sensor readings from 16-bit to 12-bit for less
accurate but faster readings. It can even turn the INT pin into an input that
triggers data sampling.

The constants you use to set up these registers, as well as additional
information about using them can be found in the “SFE_ISL29125.h” file
within the library directory. Feel free to take a look at that now or on an as-
needed basis.

The second configuration register is solely concerned with IR filtering.
Setting it properly, involves a calibration process with measurements taken
with specified types of lights. The datasheet explains this process on pages
13 and 14, while more information on the register itself is on pages 10 and
11. If you’re not sure what to set for this register, start with the value
CFG_DEFAULT or CFG2_IR_ADJUST_HIGH . In this example we used the latter

and it worked great for the office environment here at SparkFun. If neither
of those seem to work for your application great, experiment with values, or
follow the datasheet’s calibration process.

The third configuration register is all about interrupts and can be left to
default if you’re not using them. In this example we set CFG3_R_INT , which
tells the sensor to trigger interrupts based on red values being read by the
sensor. You could also set this to green, blue or off, but there is no way to
trigger on multiple colors at the same time.

Setting Interrupt Thresholds

Now that interrupts are on, when do they actually trigger? Well that has to
do with thresholds, let’s look at this next line of code within the setup()
function of our example.

RGB_sensor.setUpperThreshold(0x0B00);
//RGB_sensor.setLowerThreshold(0x0300);

For an interrupt to be triggered, the red sensor value either has to be above
the upper threshold or below the lower threshold. We set these two
thresholds with the above functions but in this example we only use the
upper one. By default the upper threshold is 0xFFFF – the highest a sensor
reading could be – and the low threshold defaults to 0x0000 – the lowest a
reading could be.

So, will an interrupt trigger if the sensor reading for red exceeds 0x0B00
once? Well, if we configured the third register with the option
CFG3_INT_PRST1 , then the answer would be yes. But in this example we

used CFG3_INT_PRST8 , which means the sensor has to have eight
consecutive readings that exceed the set threshold value before an
interrupt triggers. This helps prevent false positives and allows us to see
the larger picture without worrying about sudden fluctuations. Feel free to
change the interrupt persist amount to what best suits your application. It
can be set to 1, 2, 4, or 8.

Handling Interrupts

Now that we’ve learned more specifics for configuring the sensor, let’s dive
a bit further into the example. How does our Arduino actually use these
interrupts coming from the sensor?

The INT pin of the sensor is active-low. This means it remains at 3.3V until
an interrupt condition is met, at which point it goes LOW (ground). In our
example, we connect this pin to digital pin 2 – one of Arduino’s external
interrupt pins (using a logic level converter if needed as we did with the I C
lines).

In our setup() , we connect this interrupt to a function, also known as an

2

Page 5 of 8

interrupt service routine (ISR). The following code performs this:

attachInterrupt(0, increment, FALLING);

This makes interrupt 0, which is digital pin 2 on the Uno, call the
increment() function when the interrupt pin transitions from HIGH to LOW

(falling edge). So whenever the sensor reads the red value to be above
0x0B00 for eight consecutive samples, the interrupt line drops, and the
increment() function is called in our code. This function simply increments

a global variable i as seen below:

void increment()
{
 i++;
}

Each time through our loop() we check to see if i is different from our
recorded lasti variable. If so, we print the interrupt number, the red
sensor reading, and the amount of milliseconds since the last interrupt.
Finally, we set lasti = i so we don’t enter the if statement again until the
next interrupt. We also call the sensor’s object function readStatus()
which clears the interrupt flag and allows another interrupt to be triggered in
the future.

Here’s the full loop() if you want to take a closer look at the details:

Page 6 of 8

// Continuously check if an interrupt occured
// If so, print out interrupt #, sensor reading for red ligh
t, and time since last interrupt to serial monitor
void loop()
{
static unsigned int lasti = 0; // Stores the number of the l

ast interrupt
static unsigned long ms = millis(); // Used to calculate th

e time between interrupts
 uint16_t red_value = 0; // Stores sensor reading for red lig
ht intensity
 uint8_t flags = 0; // Stores status flags read from the sens
or

// Check if an interrupt has occured, if so, enter the if bl
ock
if (lasti != i)

 {
// Read the detected light intensity of the red visible sp

ectrum
 red_value = RGB_sensor.readRed();

// Print out the interrupt # and sensor reading
 Serial.print("Interrupt #: ");
 Serial.println(i);
 Serial.print("Red Sensor Value (HEX): ");
 Serial.println(red_value, HEX);

// Print out the # of milliseconds since the last interrup
t
 Serial.print("Milliseconds since last interrupt: ");
 Serial.println(millis() ms);
 Serial.println();
 ms = millis(); // Reset ms so we can start counting millis
econds up to the next interrupt

// Set lasti to i, so that this if statement is not entere
d again until another interrupt is triggered
 lasti = i;

// Read and clear the status flags including the interrup
t triggered flag

// This must be done otherwise another interrupt from the
sensor can not be triggered
 flags = RGB_sensor.readStatus();

// If you desire to see the reported status of the chip, u
ncomment the line below

//checkSensorStatus(flags);
 }
}

Interrupts are quite useful when you want to monitor for a change in light
level but don’t know when it might happen. Remember to modify the
configuration registers and the interrupt thresholds to what’s suitable for
your application.

Resources and Going Further
By now you’ve become familiar with the the ISL29125 sensor, the breakout
board hardware, how to acquire sensor readings, and how to implement
advanced configurations and interrupts. Enjoy experimenting and seeing
what creative uses you find for this sensor. Always feel free to share your
projects and/or feedback with us here at SparkFun!

Page 7 of 8

Extra Resources

• Processor Interrupts with Arduino
• Installing an Arduino Library
• Using the Logic Level Converter Board
• Serial Communication via I2C Protocol
• Using Github

Page 8 of 8

10/8/2015https://learn.sparkfun.com/tutorials/isl29125-rgb-light-sensor-hookup-guide?_ga=1.23962...

