Page 1 of 93

sparkfun

TART SOMETHING

SIK Experiment Guide for Arduino - V3.3

Introduction: Hardware

The SparkFun Inventor’s Kit is your map for navigating the waters of
beginning embedded electronics. This kit contains all the information and
parts you will need to create 16 circuits that cover the basics of
programming and hardware interactions. At the center of this kit is one core
philosophy — that anyone can (and should) experiment with electronics.
When you’re done with this guide, you'll have the know-how to start
creating your own projects and experiments.

This guide is also available as a downloadable PDF, if you prefer.

SIK GUIDE DOWNLOAD https://cdn.sparkfun.com/datasheets/Kits/SIK/V33/SIK%203.3%20Manual.pdf

SparkFun Inventor’s Kit - V3.3

You should have one of the two following versions of the SIK. If you need a
overview of the parts included in your kit, please click on the product link
below.

SparkFun Inventor's Kit - V3.3
O KIT-13969

darroll_vasek
Typewritten Text
https://cdn.sparkfun.com/datasheets/Kits/SIK/V33/SIK%203.3%20Manual.pdf

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

SparkFun Inventor's Kit (for Arduino Uno) - V3.3
® KIT-13970

The primary difference between the two kits is the microcontroller included
in the kit. The SparkFun Inventor’s Kit includes a SparkFun RedBoard,
while the SparkFun Inventor’s Kit for Arduino Uno includes an Arduino Uno
R3. At the heart of each is the ATmega328p microcontroller, giving both the
same functionality underneath the hood. Both development boards are
capable of taking inputs (such as the push of a button or a reading from a
light sensor) and interpreting that information to control various outputs (like
a blinking LED light or an electric motor). And much, much more!

Note: The Arduino Uno version of the kit does not include a carrying
case or printed copy of this manual to decrease weight and cost for
international shipping.

Note: You can complete all 16 experiments in this guide with either kit.

If you need more information to determine which microcontroller is right for
you, please check out the following tutorials.

RedBoard Hookup Guide
JANUARY 7, 2014
How to get your RedBoard up-and-blinking!

Page 2 of 93

What is an Arduino?
FEBRUARY 26, 2013
What is this 'Arduino’ thing anyway?

Open Source!

At SparkFun, our engineers and educators have been improving this kit and

coming up with new experiments for a long time now. We would like to give
attribution to Oomlout, since we originally started working off their Arduino
Kit material many years ago. The Oomlut version is licensed under the
Creative Commons Attribution Share-Alike 3.0 Unported License.

SparkFun’s version 3.3 is licensed under the Creative Commons Attribution

Share-Alike International License.

Suggested Reading

Before continuing on with this tutorial, we recommend you be familiar with

the concepts in the following tutorials:

What is a Circuit?

Every electrical project starts with a
circuit. Don't know what a circuit is?
We're here to help.

What is Electricity?

We can see electricity in action on
our computers, lighting our houses,
as lightning strikes in thunderstorms,
but what is it? This is not an easy

How to Use a Breadboard
Welcome to the wonderful world of
breadboards. Here we will learn
what a breadboard is and how to
use one to build your very first
circuit.

Polarity

An introduction to polarity in
electronic components. Discover
what polarity is, which parts have it,
and how to identify it.

Page 3 of 93

question, but this tutorial will shed
some light on it!

Introduction: The Arduino Software
(IDE) and Code

The following steps are a basic overview of getting started with the Arduino
IDE. For more detailed, step-by-step instructions for setting up the Arduino
IDE on your computer, please check out the following tutorial.

Installing Arduino IDE

MARCH 26, 2013

A step-by-step guide to installing and testing the Arduino software on
Windows, Mac, and Linux.

Download the Arduino IDE
In order to get your microcontroller up and running, you'll need to download
the newest version of the Arduino software first (it's free and open source!).

DOWNLOAD THE ARDUINO IDE

This software, known as the Arduino IDE, will allow you to program the
board to do exactly what you want. It's like a word processor for writing
code.

Connect the Microcontroller to your Computer

Use the USB cable provided in the SIK kit to connect the included
microcontroller (RedBoard or Arduino Uno) to one of your computer's USB
inputs.

Install FTDI Drivers

Depending on your computer’s operating system, you will need to follow
specific instructions. Please go to How to Install FTDI Drivers, for specific
instructions on how to install the FTDI drivers onto your RedBoard.

Page 4 of 93

How to Install FTDI Drivers

JUNE 4, 2013

How to install drivers for the FTDI Basic on Windows, Mac OS X, and
Linux.

Select your board: Arduino Uno

Before we can start jumping into the experiments, there are a couple
adjustments we need to make. This step is required to tell the Arduino IDE
which of the many Arduino boards we have. Go up to the Tools menu.
Then hover over Board and make sure Arduino Uno is selected.

Please note: Your SparkFun RedBoard and the Arduino UNO are
interchangeable but you won't find the RedBoard listed in the Arduino
Software. Select “Arduino Uno” instead.

Select a Serial Port

Next up we need to tell the Arduino IDE which of our computer’s serial ports
the microcontroller is connected to. For this, again go up to Tools, then
hover over Port (Serial Port in older Arduino versions) and select your
RedBoard or Arduino’s serial port.

Download Arduino Code
You are so close to to being done with setup! Download the SIK Guide
Code. Click the following link to download the code:

SIK V3.3 CODE

You can also download the code from GitHub.

Once you've unzipped the download, copy SIK-Guide-Code-V_3.3 into
examples folder in the Arduino folder.

Experiment 1: Blinking an LED

Introduction

LEDs are small, powerful lights that are used in many different applications.
To start off, we will work on blinking an LED, the Hello World of
microcontrollers. That’s right - it's as simple as turning a light on and off. It
might not seem like much, but establishing this important baseline will give
you a solid foundation as we work toward more complex experiments.

Parts Needed

Page 5 of 93

You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

« 1XLED A

* 1x 330Q Resistor

* 2x Jumper Wires

Suggested Reading

Before continuing on with this experiment, we recommend you be familiar
with the concepts in the following tutorial:

« Light-emitting Diodes - Learn more about LEDs!

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram and
hookup table below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Please note: Pay close attention to the LED. The negative side of the
LED is the short leg, marked with a flat edge.

I—' -

Flat Edge

Short Leg

L.

| +

Components like resistors need to have their legs bent into 90° angles in
order to correctly fit the breadboard sockets. You can also cut the legs
shorter to make them easier to work with on the breadboard.

D

4

(D,

Fritzing Diagram for RedBoard

Page 6 of 93

Page 7 of 93

fritzing

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

fritzing

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open Your First Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 1 by
accessing the SIK Guide Code you downloaded and placed into your
examples folder earlier.

To open the code, go to: File > Examples > SIK Guide Code >
SIK_circuit01_blink

Elmm: Sketch Tools Help

Hew N
Open., G0
Open Ragent
Skatchbook
Eamples

Class coow
Seue oS

Sawe fs., CtleShifte3

Page Setup Cilehifted
Print CrrieP

Preforences CrlsComma

Quit Caq

DLBasics
L2Digial

[3Ansog

D4 Cammurication
0.Cantral

D Sensars
U2Disgley
DEStrings

DIUSE

0 Stactarkit_Basickit
1L heduinclsP
De-Gude-Cade

Exaurgles for any boweg
Adafrit Circuit Playgraund
Bridge

Exhamat

Famata

Y]

LiquidCrpitel

30

Servn

Spacesrewun

Spper

Tembao

T

wiFi

RETRED

Ecamgles for Arduin/Genaing Un
EEPROM

SofterareSerial

B

wire

+02_potentiometer
03 gl F

T circuitD4_maalipleLED:

T circiat0s_pushButton
BE_ireumt05_pushButton v2
B cirgustDb_photoflesistar
S circustl]_tempSensar

D_cireiml4shifegister
T ciciatls LCDkcren
D circuskl_simonSarme

_

Click the picture above for a larger, easier-to-view image

Alternatively, you can copy and paste the following code into the Arduino
IDE. Hit upload, and see what happens!

Page 8 of 93

/* SparkFun Inventor's Kit
Example sketch @01 -- BLINKING A LED

Turn an LED on for one second, off for one second,
and repeat forever.

This sketch was written by SparkFun Electronics,

with lots of help from the Arduino community.

This code is completely free for any use.

Visit http://www.sparkfun.com/sik for SIK information.
Visit http://www.arduino.cc to learn about the Arduino.

Version 2.0 6/2012 MDG
*/

void setup()

{
pinMode(13, OUTPUT);

}

void loop()

{
digitalWrite(13, HIGH); // Turn on the LED
delay(1000); // Wait for one second
digitalWrite(13, LOW); // Turn off the LED
delay(1000); // Wait for one second

}

/*

/ Try changing the 1000 in the above delay() functions to

/ different numbers and see how it affects the timing. Smalle
r

/ values will make the loop run faster. (Why?)

/

/ Other challenges:

/ * Decrease the delay to 10 ms. Can you still see it blin
k?

/ Find the smallest delay that you can still see a bl
ink. What is this frequency?

/ * Modify the code above to resemble a heartbeat.

*/

Code to Note
pinMode(13, OUTPUT);

Before you can use one of the Arduino’s pins, you need to tell the
RedBoard or Arduino Uno R3 whether it is an INPUT or OUTPUT. We use
a built-in “function” called pinMode() to do this.

digitalWrite(13, HIGH);

When you’re using a pin as an OUTPUT, you can command it to be HIGH
(output 5 volts), or LOW (output 0 volts).

What You Should See

You should see your LED blink on and off. If it isn’t, make sure you have
assembled the circuit correctly and verified and uploaded the code to your
board, or see the troubleshooting section.

Page 9 of 93

Real World Application

Almost all modern flat screen televisions and monitors have LED indicator
lights to show they are on or off.

Troubleshooting
LED Not Lighting Up?

LEDs will only work in one direction. Try taking it out of your breadboard,
turning it 180 degrees, and reinserting it.

Program Not Uploading

This happens sometimes, the most likely cause is a confused serial port,
you can change this in Tools > Serial Port >

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as
soon as we can: techsupport@sparkfun.com

Experiment 2: Reading a Potentiometer

Introduction
In this circuit you’ll work with a potentiometer.

A potentiometer is also known as a variable resistor. When powered with
5V, the middle pin outputs a voltage between 0V and 5V, depending on the
position of the knob on the potentiometer. A potentiometer is a perfect
demonstration of a variable voltage divider circuit. The voltage is divided
proportionate to the resistance between the middle pin and the ground pin.
In this circuit, you’ll learn how to use a potentiometer to control the
brightness of an LED.

Parts Needed

You will need the following parts:

Page 10 of 93

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

« 1XLEDA

* 1x 330Q Resistor

¢ 6x Jumper Wires

* 1x Potentiometer

Suggested Reading

Before continuing on with this experiment, we recommend you be familiar
with the concepts in the following tutorial:

+ Analog to Digital Conversion

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram and
hookup table below to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 2 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > examples > SIK Guide Code >

Page 11 of 93

SIK_circuit02_potentiometer

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

/* SparkFun Inventor's Kit
Example sketch 02 -- POTENTIOMETER

Measure the position of a potentiometer and use it to
control the blink rate of an LED. Turn the knob to make
it blink faster or slower!

This sketch was written by SparkFun Electronics,

with lots of help from the Arduino community.

This code is completely free for any use.

Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about the Arduino.

Version 2.0 6/2012 MDG

*/

int sensorPin = A@; // The potentiometer is connected to an
alog pin @

int ledPin = 13; // The LED is connected to digital pin 1
3

int sensorValue; //We declare another integer variable to s

tore the value of the potentiometer

void setup() // this function runs once when the sketch start
s up

{
pinMode(ledPin, OUTPUT);

void loop() // this function runs repeatedly after setup() fin
ishes

{
sensorValue = analogRead(sensorPin);
digitalWrite(ledPin, HIGH); // Turn the LED on
delay(sensorValue); // Pause for sensorValue in
milliseconds
digitalWrite(ledPin, LOW); // Turn the LED off
delay(sensorValue); // Pause for sensorValue in
milliseconds
}

Code To Note

int sensorValue;

A “variable” is a placeholder for values that may change in your code. You
must introduce, or “declare” variables before you use them; here we're
declaring a variable called sensorValue, of type “int” (integer). Don’t forget
that variable names are case-sensitive!

sensorValue = analogRead(sensorPin);

We use the analogRead() function to read the value on an analog pin.
analogRead() takes one parameter, the analog pin you want to use
(“sensorPin”), and returns a number (“sensorValue”) between 0 (0 volts)
and 1023 (5 volts).

delay(sensorValue);

Page 12 of 93

Page 13 of 93

Microcontrollers are very fast, capable of running thousands of lines of code
each second. To slow it down so that we can see what it's doing, we’ll often
insert delays into the code. delay() counts in milliseconds; there are 1000
ms in one second.

What You Should See

You should see the LED blink faster or slower in accordance with your
potentiometer. If it isn’t working, make sure you have assembled the circuit
correctly and verified and uploaded the code to your board, or see the
troubleshooting section.

Real World Application

Most traditional volume knobs employ a potentiometer.

Troubleshooting
Sporadically Working

This is most likely due to a slightly dodgy connection with the
potentiometer’s pins. This can usually be conquered by holding the
potentiometer down.

Not Working

Make sure you haven’t accidentally connected the wiper, the resistive
element in the potentiometer, to digital pin O rather than analog pin 0. (the
row of pins beneath the power pins).

LED Not Lighting Up?

LEDs will only work in one direction. Double check your connections.

Experiment 3: Driving an RGB LED

Introduction

You know what’s even more fun than a blinking LED? Changing colors with
one LED. RGB, or red-green-blue, LEDs have three different color-emitting
diodes that can be combined to create all sorts of colors. In this circuit,
you'll learn how to use an RGB LED to create unique color combinations.
Depending on how bright each diode is, nearly any color is possible!

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable
* 1x Breadboard

+ 1x LED - RGB Common Cathode A
* 3x 330Q Resistor
* 5x Jumper Wires

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram and
hookup table below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

The Red Green Blue (RGB) LED is 3 LEDs in one. The RGB has four pins
with each of the three shorter pins controlling an individual color: red, green
or blue. The longer pin of the RGB is the common ground pin. You can
create a custom colored LED by turning different colors on and off to
combine them. For example, if you turn on the red pin and green pin, the
RGB will light up as yellow.

But which pin is which color? Pick up the RGB so that the longest pin
(common ground) is aligned to the left as shown in the graphic below. The
pins are Red, Ground, Green, and Blue — starting from the far left.

1-RED

2 - GROUND
3 - GREEN

4 - BLUE

Note: When wiring the RGB, each colored pin still needs a current-
limiting resistor in-line with the 1/0 pin that you plan to use to control
it, as with any standard LED.

Page 14 of 93

Fritzing Diagram for RedBoard

fritzing

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 3 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > examples > SIK Guide Code >
SIK_circuit03_rgbLED

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 15 of 93

/***

*ok kKK

* SparkFun Inventor's Kit
* Example sketch @3 -- RGB LED
*

* Make an RGB LED display a rainbow of colors!

*

* This sketch was written by SparkFun Electronics,

* with lots of help from the Arduino community.

* Visit http://learn.sparkfun.com/products/2 for SIK informat
ion.

* Visit http://www.arduino.cc to learn about the Arduino.

*

* Version 2.0 6/2012 MDG

* Version 2.1 9/2014 BCH
sk 3k 3 3k 3k 3K 3k 3k 3 3k 5k 3K 3k 3 3k 5k 5K 3k 3k 3k 3k 5k 3k 3k 3 3k 5k 5k 3k 3k 3k 3k 5k 5k 3k 3k 3k 3k 5k 3k 3k 3 3k 5k 5K %k 3 3k 5k 5K ok 3k 3 ok ok oK ok %k Kk ok

****/

const int RED_PIN = 9;
const int GREEN_PIN = 10;
const int BLUE_PIN = 11;

const int DISPLAY_TIME = 1000; // used in mainColors() to det
ermine the
// length of time each color is displayed.

void setup() //Configure the Arduino pins to be outputs to
drive the LEDs
{

pinMode (RED_PIN, OUTPUT);

pinMode (GREEN_PIN, OUTPUT);

pinMode(BLUE_PIN, OUTPUT);

void loop()
{

mainColors(); // Red, Green, Blue, Yellow, Cyan, Purp
le, White

// showSpectrum(); // Gradual fade from Red to Green to
Blue to Red

}

/***

*ok kKK

* void mainColors()

* This function displays the eight "main" colors that the RG
B LED

* can produce. If you'd like to use one of these colors in yo
ur

* own sketch, you can copy and paste that section into your ¢

ode.
/***

*oHEK

void mainColors()

{
// all LEDs off
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

// Red

digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);

Page 16 of 93

delay(DISPLAY_TIME);

// Green

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

// Blue

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);
delay(DISPLAY_TIME);

// Yellow (Red and Green)
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

// Cyan (Green and Blue)
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);
delay (DISPLAY_TIME);

// Purple (Red and Blue)
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);
delay(DISPLAY_TIME);

// White (turn all the LEDs on)
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);
delay(DISPLAY_TIME);

/3 Kok s ok sk ok ok sk ok s ok ok sk sk ok sk ok o ok sk sk ok s sk sk sk ok sk ok s sk ks o sk ok sk sk ks ok sk ok sk ok o ok o
% %k %k %k %

* void showSpectrum()

*

* Steps through all the colors of the RGB LED, displaying a r
ainbow.

* showSpectrum() calls a function RGB(int color) that transla
tes a number

* from © to 767 where @ = all RED, 767 = all RED

*

* Breaking down tasks down into individual functions like thi
s

* makes your code easier to follow, and it allows.

* parts of your code to be re-used.
KRk sk sk ok sk sk sk ok sk sk kol ks kskok sk sk ko skl sk sk skl ko sk skokskok sk sk skl ko sk skokok ok ok ok ok ok

*oA*K

void showSpectrum()
{
for (int x = @; X <= 767; X++)
{
RGB(x); // Increment x and call RGB() to progress thr
ough colors.
delay(10); // Delay for 10 ms (1/100th of a second) - t
o help the "smoothing"
}

Page 17 of 93

/***
% % %k %k %

* void RGB(int color)

*

* RGB(#i##) displays a single color on the RGB LED.

* Call RGB(#i#) with the number of a color you want

* to display. For example, RGB(®) displays pure RED, RGB(25

* displays pure green.

* This function translates a number between © and 767 into a
* specific color on the RGB LED. If you have this number coun

* through the whole range (@ to 767), the LED will smoothly
* change color through the entire spectrum.

* The "base" numbers are:
* @ = pure red

* 255 = pure green

* 511 = pure blue

* 767 = pure red (again)

* Numbers between the above colors will create blends. For

* example, 640 is midway between 512 (pure blue) and 767

* (pure red). It will give you a 50/50 mix of blue and red,

* resulting in purple.

ks ok ks ks ok s sk ks ok s ok skl sk ksl sk ok sk kol sk ok sk sk ok sk sk ks ok o o

****/

void RGB(int color)

{
int redIntensity;
int greenIntensity;
int blueIntensity;

color = constrain(color, @, 767); // constrain the input val
ue to a range of values from @ to 767

// if statement breaks down the "color" into three ranges:

if (color <= 255) // RANGE 1 (@ - 255) - red to green
{
redIntensity = 255 - color; // red goes from on to off
greenIntensity = color; // green goes from off to o
n
blueIntensity = 0; // blue is always off
¥

else if (color <= 511) // RANGE 2 (256 - 511) - green to bl
ue

{
redIntensity = 0; // red is always off
greenIntensity = 511 - color; // green on to off
blueIntensity = color - 256; // blue off to on

¥

else // RANGE 3 (>= 512)- blue to red

{
redIntensity = color - 512; // red off to on
greenIntensity = 0; // green is always off
blueIntensity = 767 - color; // blue on to off

¥

// "send" intensity values to the Red, Green, Blue Pins usin
g analogWrite()

analogWrite(RED_PIN, redIntensity);

analogWrite(GREEN_PIN, greenIntensity);

Page 18 of 93

Page 19 of 93

analogWrite(BLUE_PIN, blueIntensity);
}

Code To Note

for (x = @; X < 768; X++)
{}

A for() loop is used to repeat an action a set number of times across a

range, and repeatedly runs code within the brackets {}. Here the variable “x
starts a 0, ends at 767, and increases by one each time (“x++”).

if (x <= 255)
{}

else

{}

“If / else” statements are used to make choices in your programs. The
statement within the parenthesis () is evaluated; if it's true, the code within
the first brackets {} will run. If it's not true, the code within the second
brackets {} will run.

What You Should See

You should see your LED turn on, but this time in new, crazy colors! If it
isn’t, make sure you have assembled the circuit correctly and verified and
uploaded the code to your board or see the troubleshooting section.

Real World Application

Many electronics such as video game consoles use RGB LEDs to have the
versatility to show different colors in the same area. Often times the
different colors represent different states of working condition.

Troubleshooting
LED Remains Dark or Shows Incorrect Color

With the four pins of the LED so close together, it's sometimes easy to
misplace one. Double check each pin is where it should be.

Seeing Red

The red diode within the RGB LED may be a bit brighter than the other two.
To make your colors more balanced, use a higher ohm resistor, or adjust in
the code.

analogWrite(RED_PIN, redIntensity);

to

analogWrite(RED_PIN, redIntensity/3);
Experiment 4: Driving Multiple LEDs

Introduction

Now that you’ve gotten your LED to blink on and off, it's time to up the
stakes a little bit — by connecting eight LEDs at once. We'll also give your
RedBoard or Arduino R3 a little test by creating various lighting sequences.
This circuit is a great setup to start practicing writing your own programs
and getting a feel for the way Arduino works.

Along with controlling the LEDs, you'll learn about a couple programming
tricks that keep your code neat and tidy:

for() loops -used when you want to run a piece of code several times

arrays[] - used to make managing variables easier by grouping them
together

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

« 8x LEDA

« 8x 330Q Resistor

¢ 9x Jumper Wires

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram and
hookup table below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Fritzing Diagram for RedBoard

1

i

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Page 20 of 93

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 4 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > examples > SIK Guide Code >
SIK_circuit04_multipleLEDs

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 21 of 93

/***

*ok kKK

* SparkFun Inventor's Kit

* Example sketch @4 -- MULTIPLE LEDs

*

* Make eight LEDs dance. Dance LEDs, dance!

* This sketch was written by SparkFun Electronics,

* with lots of help from the Arduino community.

* Visit http://learn.sparkfun.com/products/2 for SIK informat
ion.

* Visit http://www.arduino.cc to learn about the Arduino.

*

* Version 2.0 6/2012 MDG

* Version 2.1 9/2014 BCH

/***

*oHAK

int ledPins[] = {2,3,4,5,6,7,8,9}; // Defines an array to st
ore the pin numbers of the 8 LEDs.

// An array is like a list variable that can store multiple nu
mbers.

// Arrays are referenced or "indexed" with a number in the bra
ckets []. See the examples in

// the pinMode() functions below.

void setup()

{
// setup all 8 pins as OUTPUT - notice that the list is "ind

exed" with a base of O.
pinMode(ledPins[@],0UTPUT); // ledPins[@] =
pinMode(ledPins[1],0UTPUT); // ledPins[1] =
pinMode(ledPins[2],0UTPUT); // ledPins[2] =
pinMode(ledPins[3],0UTPUT); // ledPins[3] =
pinMode(ledPins[4],0UTPUT); // ledPins[4] =
pinMode(ledPins[5],0UTPUT); // ledPins[5] =
pinMode(ledPins[6],0UTPUT); // ledPins[6] =
pinMode(ledPins[7],0UTPUT); // ledPins[7] =

W 0w N O VT~ WN

void loop()
{

// This loop() calls functions that we've written further be
low.

// We've disabled some of these by commenting them out (putt
ing

// "//" in front of them). To try different LED displays, re
move

// the "//" in front of the ones you'd like to run, and add
g

// in front of those you don't to comment out (and disable)
those

// lines.

oneAfterAnother(); // Light up all the LEDs in turn
//oneOnAtATime(); // Turn on one LED at a time

//pingPong(); // Same as oneOnAtATime() but chan
ge direction once LED reaches edge

//marquee(); // Chase lights like you see on th
eater signs

Page 22 of 93

//randomLED(); // Blink LEDs randomly

/***
KK KKK

* oneAfterAnother()

*

* This function turns all the LEDs on, pauses, and then turn
s all

* the LEDS off. The function takes advantage of for() loops a
nd

* the array to do this with minimal typing.
KRR sk sk ks o s ok sk sk ko ok s ok sk ko ko ok sk ok sk ok o sk sk sk ok o ok sk sk ok sk ok o sk ks sk ok ok ok

*kskok
void oneAfterAnother()
{
int index;
int delayTime = 100; // milliseconds to pause between LEDs
// make this smaller for faster switchi
ng

// Turn all the LEDs on:
for(index = @; index <= 7; index = ++index) // step throug
h index from @ to 7
{
digitalWrite(ledPins[index], HIGH);
delay(delayTime);
}

// Turn all the LEDs off:
for(index = 7; index >= @; index = --index) // step throug
h index from 7 to @
{
digitalWrite(ledPins[index], LOW);
delay(delayTime);
}

/***
KKK K

* oneOnAtATime()

*

* This function will step through the LEDs, lighting only on
e at

* a time. It turns each LED ON and then OFF before going to t
he

* next LED.
Kk kst sk ks sk stk ok sk sk sk sk skl ko sk skok sk skt sk skl sk skl kol sk sk ok sk ok ok ok ok ok

***/

void oneOnAtATime()
{
int index;
int delayTime = 100; // milliseconds to pause between LEDs
// make this smaller for faster switching

for(index = @; index <= 7; index = ++index) // step throug
h the LEDs, from @ to 7
{
digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); // pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off
}

Page 23 of 93

/***
% %k k

* pingPong()

*

* This function will step through the LEDs, lighting one at a
t

* time in both directions. There is no delay between the LED
off

* and turning on the next LED. This creates a smooth pattern
for

* the LED pattern.
[k s ok sk ok ks ok sk sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk ok sk ok sk ok ok ok o

*kk /
void pingPong()
{
int index;
int delayTime = 100; // milliseconds to pause between LEDs

for(index = @; index <= 7; index = ++index) // step throug
h the LEDs, from @ to 7
{
digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); // pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off
}

for(index = 7; index >= ©; index = --index) // step throug
h the LEDs, from 7 to ©
{

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); // pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off

¥

3Kk ks ok sk ok ok sk ko ok o sk ok sk ok sk ok ok ok sk sk ok o sk sk sk ok s ok sk ks sk ok sk sk ks ok s ok sk ok ok ok o
% %k k

* marquee()

*

* This function will mimic "chase lights" like those around

* theater signs.
/KR s ok s ok sk ok sk ok s ok o sk sk ok sk ok ok ok sk ok sk ok ok sk sk o sk ok sk sk sk sk ok sk ok sk sk ok s ok sk ok ok ok ok ok o

***/
void marquee()
{
int index;
int delayTime = 200; // milliseconds to pause between LEDs

// Step through the first four LEDs
// (We'll light up one in the lower 4 and one in the upper
4)

for(index = @; index <= 3; index++) // Step from © to 3
{
digitalWrite(ledPins[index], HIGH); // Turn a LED on
digitalWrite(ledPins[index+4], HIGH); // Skip four, and t
urn that LED on

delay(delayTime); // Pause to slow do
wn the sequence
digitalWrite(ledPins[index], LOW); // Turn the LED off

digitalWrite(ledPins[index+4], LOW); // Skip four, and t
urn that LED off
}

Page 24 of 93

/***
Kk KK

* randomLED()

*

* This function will turn on random LEDs. Can you modify it s
o it

* also lights them for random times?

[k sk ok sk ok ok sk sk ok ok ok sk ok sk ok sk ok o sk sk ok sk ok sk ok sk ok sk ok ook ok ok ook ok o

*kok
void randomLED()
{

int index;

int delayTime;

index = random(8); // pick a random number between © and 7
delayTime = 100;

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); // pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off

Code To Note
int ledPins[] = {2,3,4,5,6,7,8,9};

When you have to manage a lot of variables, an “array” is a handy way to
group them together. Here we’re creating an array of integers, called
ledPins, with eight elements.

digitalWrite(ledPins[@], HIGH);

You refer to the elements in an array by their position. The first element is

at position 0, the second is at position 1, etc. You refer to an element using

“ledPins[x]” where x is the position. Here we’re making digital pin 2 HIGH,
since the array element at position 0 is “2”.

index = random(8);

Computers like to do the same things each time they run. But sometimes
you want to do things randomly, such as simulating the roll of a dice. The
random() function is a great way to do this. See
http://arduino.cc/en/reference/random for more information.

What You Should See

This is similar to circuit number one, but instead of one LED, you should
see all the LEDs blink. If they aren’t, make sure you have assembled the
circuit correctly and verified and uploaded the code to your board, or see
the troubleshooting section.

Page 25 of 93

Real World Application

Scrolling marquee displays are generally used to spread short segments of
important information. They are built out of many LEDs.

Troubleshooting
Some LEDs Fail to Light

It is easy to insert an LED backwards. Check the LEDs that aren’t working
and ensure they are in the correct orientation.

Operating out of sequence

With eight wires it's easy to cross a couple. Double check that the first LED
is plugged into pin 2 and each pin thereafter.

Starting Fresh

It's easy to accidentally misplace a wire without noticing. Pulling everything
out and starting with a fresh slate is often easier than trying to track down
the problem.

Experiment 5: Push Buttons

Introduction

Up until now, we’ve focused mostly on outputs. Now we’re going to go to
the other end of spectrum and play around with inputs. In experiment 2, we
used an analog input to read the potentiometer. In this circuit, we’ll be
reading in one of the most common and simple inputs — a push button — by
using a digital input. The way a push button works with your RedBoard or
Arduino Uno R3 is that when the button is pushed, the voltage goes LOW.
Your RedBoard or Arduino Uno R3 reads this and reacts accordingly.

In this circuit, you will also use a pull-up resistor, which keeps the voltage
HIGH when you’re not pressing the button.

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

« 1XLEDA

* 1x 330Q Resistor

e 7x Jumper Wires

« 2x Push Buttons A

* 2x 10k Resistors

Page 26 of 93

Suggested Reading

Before continuing on with this tutorial, we recommend you be somewhat
familiar with the concepts in these tutorials:

» Switch Basics
» Analog vs. Digital

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram and
hookup table below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 5 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > examples > SIK Guide Code >
SIK_circuit05_pushButton

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 27 of 93

Page 28 of 93

/***
KK KKK

* SparkFun Inventor's Kit

* Example sketch @5 -- PUSH BUTTONS

*

* Use pushbuttons for digital input

*

* Connect one side of the pushbutton to GND, and the other

* side to a digital pin. When we press down on the pushbutt
on,

* the pin will be connected to GND, and therefore will be r
ead

* as "LOW" by the Arduino.

* This sketch was written by SparkFun Electronics,

* with lots of help from the Arduino community.

* This code is completely free for any use.

* Visit http://learn.sparkfun.com/products/2 for SIK informat
ion.

* Visit http://www.arduino.cc to learn about the Arduino.

*

* Version 2.0 6/2012 MDG

* Version 2.1 9/2014 BCH
3Kk s ok s ok ok sk ok s ok ok sk sk ok sk ok o ok sk sk ok o sk sk sk ok sk ok sk ks o sk ok sk ks ks ok sk ok sk ok ok ok o

****/

const int buttonlPin = 2; // pushbutton 1 pin
const int button2Pin = 3; // pushbutton 2 pin
const int ledPin = 13; // LED pin

int buttonlState, button2State; // variables to hold the push
button states

void setup()

{
// Set up the pushbutton pins to be an input:
pinMode(buttonlPin, INPUT);
pinMode(button2Pin, INPUT);

// Set up the LED pin to be an output:
pinMode(ledPin, OUTPUT);

void loop()

{
buttonlState = digitalRead(buttonlPin);
button2State = digitalRead(button2Pin);

// if buttonl or button 2 are pressed (but not both)
if (((buttoniState == LOW) && (button2State == HIGH)) || ((b
uttonlState == HIGH) && (button2State == LOW)))

{
digitalWrite(ledPin, HIGH); // turn the LED on
}
else
{
digitalWrite(ledPin, LOW); // turn the LED off
}
}

Code To Note

pinMode(button2Pin, INPUT);

The digital pins can be used as inputs as well as outputs. Before you do
either, you need to tell the Arduino which direction you're going.

buttonlState = digitalRead(button1Pin);

To read a digital input, you use the digitalRead() function. It will return
HIGH if there’s 5V present at the pin, or LOW if there’s OV present at the
pin.

if (buttonlState == LOW)

Because we’ve connected the button to GND, it will read LOW when it's
being pressed. Here we’re using the “equivalence” operator (“==") to see if
the button is being pressed.

What You Should See

You should see the LED turn on if you press either button, and off if you
press both buttons. (See the code to find out why!) If it isn’t working, make
sure you have assembled the circuit correctly and verified and uploaded the
code to your board or see the troubleshooting section.

Real World Application

The buttons we used here are similar to the buttons in most video game
controllers.

Troubleshooting
Light Not Turning On

The pushbutton is square, and because of this it is easy to put it in the
wrong way. Give it a 90 degree twist and see if it starts working.

Underwhelmed

No worries, these circuits are all super stripped down to make playing with
the components easy, but once you throw them together the sky is the limit.

Experiment 6: Reading a Photoresistor

Introduction

In experiment 2, you got to use a potentiometer, which varies resistance
based on the twisting of a knob. In this circuit, you'll be using a
photoresistor, which changes resistance based on how much light the
sensor receives. Since the RedBoard and Arduino Uno R3 can’t directly
interpret resistance (rather, it reads voltage), we need to use a voltage

Page 29 of 93

divider to use our photoresistor. This voltage divider will output a high
voltage when it is getting a lot of light and a low voltage when little or no
light is present.

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

« 1XLED A

* 1x 330Q Resistor

* 6x Jumper Wires

* 1x Photoresistor

* 2x 10k Resistors

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Page 30 of 93

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 06 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > examples > SIK Guide Code >
SIK_circuit06_photoResistor

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 31 of 93

/***

*ok kKK

* SparkFun Inventor's Kit
* Example sketch 06

PHOTO RESISTOR

LR I 3

Use a photoresistor (light sensor) to control the brightnes

of a LED.

EE

This sketch was written by SparkFun Electronics,

* with lots of help from the Arduino community.

* This code is completely free for any use.

* Visit http://learn.sparkfun.com/products/2 for SIK informat
ion.

* Visit http://www.arduino.cc to learn about the Arduino.

*

* Version 2.0 6/2012 MDG

* Version 2.1 9/2014 BCH
/***

*oH*k

// As usual, we'll create constants to name the pins we're usi
ng.
// This will make it easier to follow the code below.

const int sensorPin = 0;
const int ledPin = 9;

// We'll also set up some global variables for the light leve

1:

int lightlLevel;

int calibratedlightlLevel; // used to store the scaled / calibr
ated lightLevel

int maxThreshold
level

int minThreshold = 1023; // used for setting the "min" ligh
t level

0; // used for setting the "max" light

void setup()
{

pinMode(ledPin, OUTPUT); // Set up the LED pin to be an o
utput.

Serial.begin(9600);

void loop()
{

lightLevel = analogRead(sensorPin); // reads the voltage o
n the sensorPin

Serial.print(lightLevel);

//autoRange(); // autoRanges the min / max values you see i
n your room.

calibratedlightLevel = map(lightLevel, @, 1023, 0, 25
5); // scale the lightLevel from @ - 1023 range to @ - 255 ra
nge.
// the map
() function applies a linear scale / offset.
// map(input
Value, fromMin, fromMax, toMin, toMax);
Serial.print("\t"); // tab character
Serial.print(calibratedlightLevel); // println prints an C

Page 32 of 93

RLF at the end (creates a new line after)

analogWrite(ledPin, calibratedlightLevel); // set the le
d level based on the input lightLevel.
}

/***

*ok kKK

* void autoRange()
*

* This function sets a minThreshold and maxThreshold value fo
r the

* light levels in your setting. Move your hand / light sourc
e / etc

* so that your light sensor sees a full range of values. Thi
s will

* "autoCalibrate" to your range of input values.
/KR s ok s ok ok ok sk ok s ok ok sk sk ok sk ok ok ok sk sk ok sk sk sk sk ok sk ks sk sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok ok ok o

****/

void autoRange()

{
if (lightLevel < minThreshold) // minThreshold was initiali
zed to 1023 -- so, if it's less, reset the threshold level.
minThreshold = lightLevel;

if (lightLevel > maxThreshold) // maxThreshold was initiali
zed to @ -- so, if it's bigger, reset the threshold level.
maxThreshold = lightLevel;

// Once we have the highest and lowest values, we can stick
them

// directly into the map() function.

//

// This function must run a few times to get a good range o
f bright and dark values in order to work.

lightLevel = map(lightLevel, minThreshold, maxThreshold, 0,
255);

lightLevel = constrain(lightLevel, ©, 255);
}

Code To Note

lightLevel = map(lightLevel, ©, 1023, @, 255);
Parameters

map(value, fromLow, fromHigh, toLow, toHigh)

value: the number to map

fromLow: the lower bound of the value’s current range
fromHigh: the upper bound of the value’s current range
toLow: the lower bound of the value’s target range
toHigh: the upper bound of the value’s target range

When we read an analog signal using analogRead() , it will be a number
from 0 to 1023. But when we want to drive a PWM pin using

analogWrite() , it wants a number from 0 to 255. We can “squeeze” the
larger range into the smaller range using the map() function. See Arduino’s
map reference page for more info.

lightLevel = constrain(lightLevel, @, 255);

Parameters

Page 33 of 93

constrain(x, a, b)

x: the number to constrain, all data types

a: the lower end of the range, all data types
b: the upper end of the range, all data types

Because map() could still return numbers outside the “to” range, we’ll also
use a function called constrain() that will “clip” numbers into a range. If
the number is outside the range, it will make it the largest or smallest
number. If it is within the range, it will stay the same. See Arduino’s
constrain reference page for more info.

What You Should See

You should see the LED grow brighter or dimmer in accordance with how
much light your photoresistor is reading. If it isn’t working, make sure you
have assembled the circuit correctly and verified and uploaded the code to
your board or see the troubleshooting section.

Real World Application

Some street lamps as well as solar walkway lights use photoresistors to
detect the absence of the sun and turn on the lights.

Troubleshooting
LED Remains Dark

This is a mistake we continue to make time and time again, if only they
could make an LED that worked both ways. Pull it out of the breadboard,
and reinsert it turned 180 degrees.

It Isn’t Responding to Changes in Light

Given that the spacing of the wires on the photoresistor is not standard, it is
easy to misplace it. Double check it’s in the right place.

Still Not Quite Working

You may be in a room which is either too bright or dark. Try turning the
lights on or off to see if this helps. Or if you have a flashlight near by give
that a try.

Experiment 7: Reading a Temperature
Sensor

Introduction

Page 34 of 93

A temperature sensor is exactly what it sounds like — a sensor used to
measure ambient temperature. This particular sensor has three pins — a
positive, a ground, and a signal. This is a linear temperature sensor. A
change in temperature of one degree centigrade is equal to a change of 10
millivolts at the sensor output.

The TMP36 sensor has a nominal 750 mV at 25°C (about room
temperature). In this circuit, you'll learn how to integrate the temperature
sensor with your RedBoard or Arduino Uno R3, and use the Arduino IDE’s
serial monitor to display the temperature.

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

* 5x Jumper Wires

+ 1x Temperature Sensor A

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Please note: The temperature sensor can only be connected to a
circuit in one direction. See below for the pin outs of the temperature
sensor - TMP36

GND
SIGNAL
+V

FRONT

+V
SIGNAL
GND

BACK
Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Page 35 of 93

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 7 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > examples > SIK Guide Code >
SIK_circuit07_tempSensor

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 36 of 93

/***

*ok kKK

SparkFun Inventor's Kit
Example sketch 07 - TEMPERATURE SENSOR
Use the "serial monitor" window to read a temperature senso

The TMP36 is an easy-to-use temperature sensor that outputs
a voltage that's proportional to the ambient temperature.
You can use it for all kinds of automation tasks where you'd
like to know or control the temperature of something.
More information on the sensor is available in the datashee
t:
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Temp/
TMP35_36_37.pdf
Even more exciting, we'll start using the Arduino's serial p
ort
to send data back to your main computer! Up until now, we've
been limited to using simple LEDs for output. We'll see that
the Arduino can also easily output all kinds of text and dat
a.
This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about the Arduino.

Version 2.0 6/2012 MDG
3k 5k 3k 3k 3k 3k 3k 3k 5k 3k >k >k >k >k >k >k >k >k 3k 3k 3k 3k 3k 3k 5k 5k 3k 5k 5k 5k 3k 5k 5k 3k 3k >k >k %k >k %k %k %k 3k 3k >k 3k 3k 3k 3k 3k 3k 5k 5k >k 5k %k > 5k % % k *k

*HEK

// We'll use analog input @ to measure the temperature senso
r's
// signal pin.

const int temperaturePin = A@;

void setup()
{

Serial.begin(9600); //Initialize serial port & set baud ra
te to 9600 bits per second (bps)

}

void loop()
{

float voltage, degreesC, degreesF; //Declare 3 floating po
int variables

voltage = getVoltage(temperaturePin); //Measure the voltag
e at the analog pin

degreesC = (voltage - 0.5) * 100.0; // Convert the voltag
e to degrees Celsius

degreesF = degreesC * (9.0 / 5.0) + 32.0; //Convert degree
s Celsius to Fahrenheit

//Now print to the Serial monitor. Remember the baud must
be 9600 on your monitor!

Page 37 of 93

// These statements will print lines of data like this:
// "voltage: ©.73 deg C: 22.75 deg F: 72.96"

Serial.print("voltage: ");
Serial.print(voltage);
Serial.print(" deg C: ");
Serial.print(degreesC);
Serial.print(" deg F: ");
Serial.println(degreesF);

delay(1000); // repeat once per second (change as you wis
ht)

float getVoltage(int pin) //Function to read and return
//floating-point value (true volta
ge)
//on analog pin

return (analogRead(pin) * ©.004882814);

// This equation converts the @ to 1023 value that analogR
ead()

// returns, into a 0.0 to 5.0 value that is the true volta
ge

// being read at that pin.

// Other things to try with this code:

// Turn on an LED if the temperature is above or below a val
ue.

// Read that threshold value from a potentiometer - now yo
u've
// created a thermostat!

Code To Note
Serial.begin(9600);

Before using the serial monitor, you must call Serial.begin() to initialize
it. 9600 is the “baud rate”, or communications speed. When two devices are
communicating with each other, both must be set to the same speed.

Serial.print(degreesC);

The Serial.print() command is very smart. It can print out almost
anything you can throw at it on the same line. This can include variables of
all types, quoted text (AKA “strings”), etc. See
http://arduino.cc/en/serial/print for more info.

Serial.println(degreesF);

The serial.println() has the same functionality except any serial data
being printed after this command will start on the next line. By using both of
these commands together, you can create easy-to-read printouts of text
and data.

What You Should See

You should be able to read the temperature your temperature sensor is
detecting on the serial monitor in the Arduino IDE. If it isn’t working, make
sure you have assembled the circuit correctly and verified and uploaded the
code to your board or see the troubleshooting section.

Page 38 of 93

Example of what you should see in the Arduino IDE’s serial monitor:
voltage: 0.73 deg C: 23.24 deg F: 73.84
voltage: 0.73 deg C: 23.24 deg F: 73.84
voltage: 0.73 deg C: 22.75 deg F: 72.96
voltage: 0.73 deg C: 23.24 deg F: 73.84
voltage: 0.73 deg C: 23.24 deg F: 73.84
voltage: 0.73 deg C: 23.24 deg F: 73.84
voltage: 0.73 deg C: 22.75 deg F: 72.96
voltage: 0.73 deg C: 23.24 deg F: 73.84
voltage: 0.73 deg C: 22.75 deg F: 72.96
voltage: 0.73 deg C: 22.75 deg F: 72.96
voltage: 0.73 deg C: 23.24 deg F: 73.84
voltage: 0.73 deg C: 22.75 deg F: 72.96
voltage: 0.73 deg C: 23.24 deg F: 73.84

Real World Application

Building climate control systems use a temperature sensor to monitor and
maintain their settings.

Troubleshooting
Nothing Seems to Happen

This program has no outward indication it is working. To see the results you
must open the Arduino IDE’s serial monitor (instructions on previous page).

Gibberish is Displayed

This happens because the serial monitor is receiving data at a different
speed than expected. To fix this, click the pull-down box that reads
*** paud and changeitto 9600 baud .

Temperature Value is Unchanging

Try pinching the sensor with your fingers to heat it up or pressing a bag of
ice against it to cool it down. Also, make sure that the wires are connected
properly to the temperature sensor.

Warm to the Touch

Page 39 of 93

Make sure that you wired the temperature sensor correctly. The
temperature sensor can get warm to the touch if it is wired incorrectly. You
would need to disconnect your microcontroller, rewire the circuit, connect it
back to your computer, and open the serial monitor.

Experiment 8: Driving a Servo Motor

Introduction

Servos are ideal for embedded electronics applications because they do
one thing very well that motors cannot — they can move to a position
accurately. By varying the pulse width of the output voltage to a servo, you
can move a servo to a specific position. For example, a pulse of 1.5
milliseconds will move the servo 90 degrees. In this circuit, you'll learn how
to use PWM (pulse width modulation) to control and rotate a servo.

Parts Needed

You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

* 8x Jumper Wires

« 1x Servo A

Suggested Reading

Before continuing on with this experiment, we recommend you be familiar
with the concepts in the following tutorial:

* Pulse-width Modulation

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Connect 3x jumper wires to the female 3 pin header on the servo. This will
make it easier to breadboard the servo.

Fritzing Diagram for RedBoard

Page 40 of 93

fritzing

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

]

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

fritzing

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 08 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > examples > SIK Guide Code >
SIK_circuit08-1_servoSweep

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 41 of 93

/*
SparkFun Inventor's Kit
Example sketch 08-1
SINGLE SERVO
Sweep a servo back and forth through its full range of motio

A "servo", short for servomotor, is a motor that includes
feedback circuitry that allows it to be commanded to move to
specific positions. This one is very small, but larger servo

are used extensively in robotics to control mechanical arms,
hands, etc. You could use it to make a (tiny) robot arm,
aircraft control surface, or anywhere something needs to be
moved to specific positions.

This sketch was written by SparkFun Electronics,

with lots of help from the Arduino community.

This code is completely free for any use.

Visit http://learn.sparkfun.com/products/2 for SIK informatio

n.

Visit http://www.arduino.cc to learn about the Arduino.

Version 2.0 6/2012 MDG

*/

#include <Servo.h> // servo library

Servo servol; // servo control object

void setup()

{

servol.attach(9, 900, 2100); //Connect the servo to pin 9
//with a minimum pulse width o

.F

//900 and a maximum pulse widt
h of

//2100.
}

void loop()
{

int position;

// To control a servo, you give it the angle you'd like it
// to turn to. Servos cannot turn a full 360 degrees, but yo

// can tell it to move anywhere between © and 180 degrees.
// Change position at full speed:

servol.write(90); // Tell servo to go to 90 degrees
delay(1000); // Pause to get it time to move
servol.write(180); // Tell servo to go to 180 degrees
delay(1000); // Pause to get it time to move

servol.write(0); // Tell servo to go to @ degrees

Page 42 of 93

delay(1000); // Pause to get it time to move

// Tell servo to go to 180 degrees, stepping by two degree
s each step

for(position = @; position < 180; position += 2)

{
servol.write(position); // Move to next position
delay(20); // Short pause to allow it to mov

// Tell servo to go to @ degrees, stepping by one degree eac
h step

for(position = 180; position >= @; position -= 1)
{
servol.write(position); // Move to next position
delay(20); // Short pause to allow it to mov
e
¥
}

Code To Note

#include <Servo.h>

#include is a special “preprocessor” command that inserts a library (or
any other file) into your sketch. You can type this command yourself, or
choose an installed library from the “sketch / import library” menu.

Servo servol;
servol.attach(9);

The servo library adds new commands that let you control a servo. To
prepare the Arduino to control a servo, you must first create a Servo
“object” for each servo (here we’ve named it “servo1”), and then “attach” it
to a digital pin (here we’re using pin 9).

servol.write(180);

The servos in this kit don’t spin all the way around, but they can be
commanded to move to a specific position. We use the servo library’s
write() command to move a servo to a specified number of degrees(0 to
180). Remember that the servo requires time to move, so give it a short
delay() if necessary.

What You Should See

You should see your servo motor move to various locations at several
speeds. If the motor doesn’t move, check your connections and make sure
you have verified and uploaded the code, or see the troubleshooting
section.

Page 43 of 93

Real World Application

Robotic arms you might see in an assembly line or sci-fi movie probably
have servos in them.

Troubleshooting
Servo Not Twisting

Even with colored wires it is still shockingly easy to plug a servo in
backward. This might be the case.

Still Not Working

A mistake we made a time or two was simply forgetting to connect the
power (red and black wires) to +5 volts and ground.

Fits and Starts

If the servo begins moving then twitches, and there’s a flashing light on
your RedBoard or Arduino Uno R3, the power supply you are using is not
quite up to the challenge. Using a wall adapter instead of USB should solve
this problem.

More Servo Fun!

Now that you know the basics of working with servos, try to figure out how
to make your servo move using the following code.

To open the code go to: File > examples > SIK Guide Code >
SIK_circuit08-2_serialServo

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 44 of 93

/*
SparkFun Inventor's Kit
Example sketch 08-2
SINGLE SERVO
Sweep a servo back and forth through its full range of motio

A "servo", short for servomotor, is a motor that includes
feedback circuitry that allows it to be commanded to move to
specific positions. This one is very small, but larger servo

are used extensively in robotics to control mechanical arms,
hands, etc. You could use it to make a (tiny) robot arm,
aircraft control surface, or anywhere something needs to be
moved to specific positions.

This sketch was written by SparkFun Electronics,

with lots of help from the Arduino community.

This code is completely free for any use.

Visit http://learn.sparkfun.com/products/2 for SIK informatio

n.

Visit http://www.arduino.cc to learn about the Arduino.

Version 2.0 6/2012 MDG

*/

#include <Servo.h> // servo library
Servo servol; // servo control object
int angle;

void setup()

{
servol.attach(9, 900, 2100);

Serial.begin(9600);
}

void loop()
{

serialServo();

}

void serialServo()

{

int speed;

Serial.println("Type an angle (0-180) into the box above,");
Serial.println("then click [send] or press [return]");
Serial.println(); // Print a blank line

// In order to type out the above message only once,
// we'll run the rest of this function in an infinite loop:

while(true) // "true" is always true, so this will loop for
ever.

{

// First we check to see if incoming data is available:
while (Serial.available() > 0)
{

// If it is, we'll use parseInt() to pull out any number

angle = Serial.parselnt();

Page 45 of 93

// Because servo.write() only works with numbers from
// @ to 180, we'll be sure the input is in that range:

angle = constrain(angle, 0, 180);

// We'll print out a message to let you know that the
// number was received:

Serial.print("Setting angle to ");
Serial.println(angle);

// And finally, we'll move the servo to its new positio
n!

servol.write(angle);

Hint: if you don’t see any servo movement, try reading the comments in the
code!

Experiment 9: Using a Flex Sensor

Introduction

In this circuit, we will use a flex sensor to measure, well, flex! A flex sensor
uses carbon on a strip of plastic to act like a variable resistor, but instead of
changing the resistance by turning a knob, you change it by flexing
(bending) the component. We use a “voltage divider” again to detect this
change in resistance.

The sensor bends in one direction and the more it bends, the higher the
resistance gets; it has a range from about 10K ohm to 35K ohm. In this
circuit we will use the amount of bend of the flex sensor to control the
position of a servo.

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

* 11x Jumper Wires

« 1x Servo A

* 1x Flex Sensor

* 1x 10k resistor

Suggested Reading

Before continuing on with this experiment, we recommend you be familiar
with the concepts in the following tutorial:

* Voltage Dividers

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Page 46 of 93

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Connect 3x jumper wires to the female 3 pin header on the servo. This will
make it easier to breadboard the servo.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 9 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code >
SIK_circuit09_flexSensor

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 47 of 93

/*
SparkFun Inventor's Kit
Example sketch 09
FLEX SENSOR
Use the "flex sensor" to change the position of a servo

In the previous sketch, we learned how to command a servo to
mode to different positions. In this sketch, we'll introduce
a new sensor, and use it to control the servo.

A flex sensor is a plastic strip with a conductive coating.

When the strip is straight, the coating will be a certain

resistance. When the strip is bent, the particles in the coa
ting

get further apart, increasing the resistance. You can use th
is

sensor to sense finger movement in gloves, door hinges, stuf
fed

animals, etc. See http://www.sparkfun.com/tutorials/270 for

more information.

This sketch was written by SparkFun Electronics,

with lots of help from the Arduino community.

This code is completely free for any use.

Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.

Visit http://www.arduino.cc to learn about the Arduino.
Version 2.0 6/2012 MDG

*/

// Include the servo library to add servo-control functions:

#include <Servo.h>

Servo servol; //Create a servo "object", called servol.
//Each servo object controls one servo (you
//can have a maximum of 12).

const int flexPin = A@; //Define analog input pin to measure

//flex sensor position.

void setup()
{

Serial.begin(9600); //Set serial baud rate to 9600 bps

servol.attach(9); // Enable control of a servo on pin 9

void loop()
{

int flexPosition; // Input value from the analog pin.
int servoPosition; // Output value to the servo.

// Read the position of the flex sensor (@ to 1023):
flexPosition = analogRead(flexPin);

servoPosition = map(flexPosition, 600, 900, 0, 180);
servoPosition = constrain(servoPosition, 0, 180);

Page 48 of 93

// Now we'll command the servo to move to that position:

servol.write(servoPosition);

Serial.print("sensor: ");
Serial.print(flexPosition);
Serial.print(" servo: ");
Serial.println(servoPosition);

delay(20); // wait 2@ms between servo updates

Code To Note

servoposition = map(flexposition, 600, 900, ©, 180);
map(value, fromLow, fromHigh, toLow, toHigh)

Because the flex sensor / resistor combination won't give us a full 0 to 5 volt
range, we're using the map() function as a handy way to reduce that
range. Here we’ve told it to only expect values from 600 to 900, rather than
0 to 1023.

servoposition = constrain(servoposition, 0, 189);
constrain(x, a, b)

Because map() could still return numbers outside the “to” range, we’ll also
use a function called constrain() that will “clip” numbers into a range. If
the number is outside the range, it will make it the largest or smallest
number. If it is within the range, it will stay the same.

What You Should See

You should see the servo motor move in accordance with how much you
are flexing the flex sensor. If it isn’t working, make sure you have
assembled the circuit correctly and verified and uploaded the code to your
board or see the troubleshooting section.

Real World Application

Controller accessories for video game consoles like Nintendo’s “Power
Glove” use flex-sensing technology. It was the first video game controller
attempting to mimic hand movement on a screen in real time.

Page 49 of 93

Troubleshooting
Servo Not Twisting

Even with colored wires it is still shockingly easy to plug a servo in
backwards. This might be the case.

Servo Not Moving as Expected

The sensor is only designed to work in one direction. Try flexing it the other
way (where the striped side faces out on a convex curve).

Servo Doesn’'t Move Very Far

You need to modify the range of values in the call to the map() function.

Experiment 10: Reading a Soft
Potentiometer

Introduction

In this circuit, we are going to use yet another kind of variable resistor — this
time, a soft potentiometer (or soft pot). This is a thin and flexible strip that
can detect where pressure is being applied. By pressing down on various
parts of the strip, you can vary the resistance from 100 to 10k ohms. You
can use this ability to track movement on the soft pot, or simply as a button.
In this circuit, we’ll get the soft pot up and running to control an RGB LED.

Parts Needed

You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

* 9x Jumper Wires

* 1x 10k resistor

* 1x Soft Potentiometer

* 3x 330Q resistors

+ 1x LED - RGB Common Cathode A

Hardware Hookup
Ready to start hooking everything up? Check out the Fritzing diagram

below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Page 50 of 93

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 10 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code >
SIK_circuit10_softPotentiometer

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 51 of 93

/*
SparkFun Inventor's Kit
Example sketch 10
SOFT POTENTIOMETER
Use the soft potentiometer to change the color
of the RGB LED
The soft potentiometer is a neat input device that detects
pressure along its length. When you press it down with a fin
ger
(it works best on a flat surface), it will change resistance
depending on where you're pressing it. You might use it to m
ake
a piano or light dimmer; here we're going to use it to contr
ol
the color of an RGB LED.

This sketch was written by SparkFun Electronics,

with lots of help from the Arduino community.

This code is completely free for any use.

Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.

Visit http://www.arduino.cc to learn about the Arduino.
Version 2.0 6/2012 MDG

*/

// Constants for LED connections

const int RED_LED_PIN = 9; // Red LED Pin
const int GREEN_LED_PIN = 10; // Green LED Pin
const int BLUE_LED_PIN = 11; // Blue LED Pin

const int SENSOR_PIN = 0; // Analog input pin

// Global PWM brightness values for the RGB LED.
// These are global so both loop() and setRGB() can see them.

int redvalue, greenValue, blueValue;

void setup()
{

// No need for any code here
// analogWrite() sets up the pins as outputs

void loop()
{

int sensorValue;

sensorValue = analogRead(SENSOR_PIN); // Read the voltage fr
om the softpot (©-1023)

setRGB(sensorValue); //Set a RGB LED to a position on the
"rainbow" of all colors
//based on the sensorValue

void setRGB(int RGBposition)

{

int mapRGB1, mapRGB2, constrainedl, constrained2;

mapRGB1 = map(RGBposition, ©, 341, 255, 0);
constrainedl = constrain(mapRGB1l, @, 255);

Page 52 of 93

Page 53 of 93

mapRGB2 = map(RGBposition, 682, 1023, @, 255);
constrained2 = constrain(mapRGB2, @, 255);

redValue = constrainedl + constrained2; //Create the red pea

//Create the green peak
//Note that we are nesting functions (which requires fewer v
ariables)

greenValue = constrain(map(RGBposition, @, 341, @, 255), 0,
255)
- constrain(map(RGBposition, 341, 682, 0,255),
0, 255);

//Create the blue peak
blueValue = constrain(map(RGBposition, 341, 682, @, 255),
0, 255)
- constrain(map(RGBposition, 682, 1023, @0, 255),
0, 255);

// Display the new computed "rainbow" color
analogWrite(RED_LED_PIN, redValue);
analogWrite(GREEN_LED_PIN, greenValue);
analogWrite(BLUE_LED_PIN, blueValue);

Code To Note

redvValue = constrain(map(RGBposition, ©, 341, 255, @), @, 255)
+ constrain(map(RGBposition, 682, 1023, @, 255), ©, 255);

greenValue = constrain(map(RGBposition, @, 341, @, 255), @, 25
5)
- constrain(map(RGBposition, 341, 682, 0,255), @, 255);

blueValue = constrain(map(RGBposition, 341, 682, @, 255), 0, 2
55)
- constrain(map(RGBposition, 682, 1023, @, 255), @, 255);

These big, scary functions take a single Value (RGBposition) and calculate
the three RGB values necessary to create a rainbow of color. The functions
create three “peaks” for the red, green, and blue values, which overlap to
mix and create new colors. See the code for more information! Even if
you're not 100% clear how it works, you can copy and paste this (or any)
function into your own code and use it yourself.

What You Should See

You should see the RGB LED change colors in accordance with how you

interact with the soft potentiometer. If it isn’t working, make sure you have
assembled the circuit correctly and verified and uploaded the code to your
board, or see the troubleshooting section.

Real World Application

The knobs found on many objects, like a radio for instance, are using
similar concepts to the one you just completed for this circuit.

Troubleshooting
LED Remains Dark or Shows Incorrect Color

With the four pins of the LED so close together, it's sometimes easy to
misplace one. Try double checking each pin is where it should be.

Bizarre Results

The most likely cause of this is if you're pressing the potentiometer in more
than one position. This is normal and can actually be used to create some
neat results.

Experiment 11: Using a Piezo Buzzer

Introduction

In this circuit, we’ll again bridge the gap between the digital world and the
analog world. We’'ll be using a piezo buzzer that makes a small “click” when
you apply voltage to it (try it!). By itself that isn’t terribly exciting, but if you
turn the voltage on and off hundreds of times a second, the piezo buzzer
will produce a tone. And if you string a bunch of tones together, you've got
music! This circuit and sketch will play a classic tune. We'll never let you
down!

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

* 3x Jumper Wires

* 1x Piezo Buzzer

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’'s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Page 54 of 93

Fritzing Diagram for RedBoard

.

fritzing

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 11 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code >
SIK_circuit11_buzzer

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 55 of 93

/**

*ok kKKK

* SparkFun Inventor's Kit
Example sketch 11

*
*
* BUZZER
*
*

This sketch uses the buzzer to play songs.

* The Arduino's tone() command will play notes of a given fre
quency.

*

* This sketch was written by SparkFun Electronics,

* with lots of help from the Arduino community.

* (This sketch was originally developed by D. Cuartielles fo
r K3)

* This code is completely free for any use.

* Visit http://learn.sparkfun.com/products/2 for SIK informat
ion.

* Visit http://www.arduino.cc to learn about the Arduino.

*

* Version 2.0 6/2012 MDG

* Version 2.1 9/2014 BCH

3k >k 3k 3k >k 3k 3k 3k 3k >k 3k 5k >k 3k 3k 3k 3k ok 3k 3k >k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k >k 3k 5k ok 3k ok k koK k ok ok

*oHkk

const int buzzerPin = 9; // connect the buzzer to pin 9
const int songlLength = 18; // sets the number of notes of th
e song

// Notes is an array of text characters corresponding to the n
otes
// in your song. A space represents a rest (no tone)

char notes[songLength] = {

'c¢', 'd', 'f', 'd', 'a', "', 'a', 'g', ', 'c', d', 'f',
d,otgt, e L
// beats[] is an array of values for each note. A "1" represen
ts a quarter-note,
// "2" a half-note, and "4" a quarter-note.
// Don't forget that the rests (spaces) need a length as well.

int beats[songlLength] = {
1,1,1,1,1,1, 4, 4,2,1,1, 1,1, 1, 1, 4, 4, 2};

int tempo = 113; // The tempo is how fast to play the song (b
eats per second).

void setup()

{
pinMode(buzzerPin, OUTPUT); // sets the buzzer pin as an O
UTPUT

}

void loop()
{

int i, duration; //

for (i = @; i < songlLength; i++) // for loop is used to inde
X through the arrays

{

Page 56 of 93

duration = beats[i] * tempo; // length of note/rest in ms

if (notes[i] == " ") // is this a rest?
delay(duration); // then pause for a moment
else // otherwise, play the note
{
tone(buzzerPin, frequency(notes[i]), duration);
delay(duration); // wait for tone to finish
}
delay(tempo/10); // brief pause between notes
¥
while(true){
// We only want to play the song once, so we pause forever
¥

// If you'd like your song to play over and over, remove th
e while(true)
// statement above

int frequency(char note)
{
int i;
const int numNotes = 8; // number of notes we're storing
char names[numNotes] = {
e, td', e, 'fY, 'g', 'a', 'b', 'C’ 1
int frequencies[numNotes] = {
262, 294, 330, 349, 392, 440, 494, 523 };

// Now we'll search through the letters in the array, and if
// we find it, we'll return the frequency for that note.

for (i = @; i < numNotes; i++) // Step through the notes

{
if (names[i] == note) // Is this the one?
{
return(frequencies[i]); // Yes! Return the frequenc
y and exit function.
}
}
return(@); // We looked through everything and didn't find
it,

// but we still need to return a value, so return 0.

Code To Note

char notes[] = "cdfda ag cdfdg gf ";
char names[] = {'c','d", e","','g","a",'b', ' C'};

Up until now we’ve been working solely with numerical data, but the
Arduino can also work with text. Characters (single, printable, letters,
numbers and other symbols) have their own type, called “char”. When you

have an array of characters, it can be defined between double-quotes (also

called a “string”), OR as a list of single-quoted characters.
tone(pin, frequency, duration);

One of Arduino’s many useful built-in commands is the tone() function.
This function drives an output pin at a certain frequency, making it perfect
for driving buzzers and speakers. If you give it a duration (in milliseconds),
it will play the tone then stop. If you don’t give it a duration, it will keep
playing the tone forever (but you can stop it with another function,

noTone()).

Page 57 of 93

What You Should See

You should see - well, nothing! But you should be able to hear a song. If it
isn’t working, make sure you have assembled the circuit correctly and
verified and uploaded the code to your board or see the troubleshooting
section.

Real World Application

Many modern megaphones have settings that use a loud amplified buzzer.
They are usually very loud and quite good at getting people’s attention.

Troubleshooting
No Sound

Given the size and shape of the piezo buzzer it is easy to miss the right
holes on the breadboard. Try double checking its placement.

Can’t Think While the Melody is Playing

Just pull up the piezo buzzer or one of the wires whilst you think, upload
your program then plug it back in.

Feeling Let Down and Deserted

The code is written so you can easily add your own songs.

Experiment 12: Driving a Motor

Introduction

Back in experiment 8, you got to work with a servo motor. Now, we are
going to tackle spinning a motor. This requires the use of a transistor, which
can switch a larger amount of current than the RedBoard or Arduino Uno
R3 can.

When using a transistor, you just need to make sure its maximum specs
are high enough for your use case. The transistor we are using for this
circuit is rated at 50V max and 800 milliamps max — perfect for our toy
motor! When the motor is spinning and suddenly turned off, the magnetic
field inside it collapses, generating a voltage spike. This can damage the
transistor. To prevent this, we use a “flyback diode”, which diverts the
voltage spike around the transistor.

Parts Needed

You will need the following parts:

Page 58 of 93

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

* 6x Jumper Wires

1x Motor

1x 330Q Resistor

1x NPN transistor A

1x Diode 1N4148 A

Suggested Reading

Before continuing on with this experiment, we recommend you be familiar
with the concepts in the following tutorial:

* Motors and Selecting the Right One
» Diodes
* Transistors

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Please note: When you're building the circuit be careful not to mix up
the transistor and the temperature sensor, they’re almost identical.
Look for “BC337” on the body of the transistor.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a

bigger image.

Fritzing Diagram for Arduino

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a

bigger image.

Open the Sketch

Page 59 of 93

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 12 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code >
SIK_circuit12_motorSpin

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 60 of 93

/***

*ok K kKKK

* SparkFun Inventor's Kit
Example sketch 12

*
*
* SPINNING A MOTOR
*
*

This example requires that you drive your motor using a swi

tching

* transistor. The Arduino is only capable of sourcing about 4
0 mA of

* current per pin and a motor requires upwards of 150 mA.

*

* Look at the wiring diagram in the SIK Guide - Circuit #12 o
r read the

* notes in the readme tab for more information on wiring.

*

* This sketch was written by SparkFun Electronics,

* with lots of help from the Arduino community.

* This code is completely free for any use.

* Visit http://learn.sparkfun.com/products/2 for SIK informat
ion.

* Visit http://www.arduino.cc to learn about the Arduino.

*

* Version 2.0 6/2012 MDG

* Version 2.1 8/2014 BCH
3k 3k 3k 3k 5k 3k sk ok 5k sk >k ok 5k sk 5k 5k 5k sk 5k ok 5k sk >k 5k 5k 5k %k 5k 5k 3k 5k 5k 5k 5k 5k 5k 3k %k 5k 5k 5k %k 5k 3k 5k %k 5k 3k >k %k 5k 3k >k >k 5k 3k %k >k %k k k

LEEELLY

const int motorPin = 9; // Connect the base of the transisto
r to pin 9.

// Even though it's not directly conn
ected to the motor,

// we'll call it the 'motorPin'

void setup()

{
pinMode(motorPin, OUTPUT); // set up the pin as an OUTPUT
Serial.begin(9600); // initialize Serial communicati
ons
}

void loop()
{ // This example basically replicates a blink, but with the m
otorPin instead.

int onTime = 3000; // milliseconds to turn the motor on

int offTime = 3000; // milliseconds to turn the motor off

analogWrite(motorPin, 255); // turn the motor on (full spee
d)

delay(onTime); // delay for onTime millisecon
ds

analogWrite(motorPin, ©); // turn the motor off

delay(offTime); // delay for offTime milliseco
nds

// Uncomment the functions below by taking out the //. Look
below for the
// code examples or documentation.

// speedUpandDown();
// serialSpeed();

Page 61 of 93

// This function accelerates the motor to full speed,
// then decelerates back down to a stop.
void speedUpandDown()
{
int speed;
int delayTime = 20; // milliseconds between each speed step

// accelerate the motor
for(speed = @; speed <= 255; speed++)
{
analogWrite(motorPin,speed); // set the new speed
delay(delayTime); // delay between speed ste
ps
}
// decelerate the motor
for(speed = 255; speed >= 0; speed--)
{
analogWrite(motorPin,speed); // set the new speed
delay(delayTime); // delay between speed ste
ps
}

// Input a speed from ©-255 over the Serial port
void serialSpeed()

{

int speed;

Serial.println("Type a speed (©-255) into the box above,");
Serial.println("then click [send] or press [return]");
Serial.println(); // Print a blank line

// In order to type out the above message only once,
// we'll run the rest of this function in an infinite loop:

while(true) // "true" is always true, so this will loop for
ever.
{
// Check to see if incoming data is available:
while (Serial.available() > 0)
{
speed = Serial.parseInt(); // parseInt() reads in the f
irst integer value from the Serial Monitor.
speed = constrain(speed, @, 255); // constrains the spee
d between @ and 255
// because analogWrite
() only works in this range.

Serial.print("Setting speed to "); // feedback and prin
ts out the speed that you entered.
Serial.println(speed);

analogWrite(motorPin, speed); // sets the speed of the
motor.

}

Code To Note

while (Serial.available() > @)

Page 62 of 93

The Arduino’s serial port can be used to receive as well as send data.
Because data could arrive at any time, the Arduino stores, or “buffers” data
coming into the port until you're ready to use it. The Serial.available()
command returns the number of characters that the port has received, but
haven’t been used by your sketch yet. Zero means no data has arrived.

speed = Serial.parseInt();

If the port has data waiting for you, there are a number of ways for you to
use it. Since we're typing numbers into the port, we can use the handy
Serial.parseInt() command to extract, or “parse” integer numbers from
the characters it’s received. If you type “1” “0” “0” to the port, this function
will return the number 100.

What You Should See

The DC Motor should spin if you have assembled the circuit's components
correctly, and also verified/uploaded the correct code. If your circuit is not
working check the troubleshooting section.

Real World Application

Radio Controlled (RC) cars use Direct Current (DC) motors to turn the
wheels for propulsion.

Troubleshooting
Motor Not Spinning

If you sourced your own transistor, double check with the data sheet that
the pinout is compatible with a BC337 (many are reversed).

Still No Luck

If you sourced your own motor, double check that it will work with 5 volts
and that it does not draw too much power.

Still Not Working

Sometimes the Arduino will disconnect from the computer. Try un-plugging
and then re-plugging it into your USB port.

Experiment 13: Using Relays

Introduction

In this circuit, we are going to use some of the lessons we learned in
experiment 12 to control a relay. A relay is basically an electrically
controlled mechanical switch. Inside that harmless looking plastic box is an

Page 63 of 93

electromagnet that, when it gets a jolt of energy, causes a switch to trip. In
this circuit, you'll learn how to control a relay like a pro — giving your
Arduino even more powerful abilities!

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

¢ 14x Jumper Wires

* 2x 330Q Resistor

- 1x NPN transistor A

+ 1x Diode 1N4148 A

« 2x LEDs A

* 1x Relay (SPDT)

Suggested Reading

Before continuing on with this experiment, we recommend you be familiar
with the concepts in the following tutorial:

» Switch Basics

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Fritzing Diagram for RedBoard

fritzing

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

fritzing

Page 64 of 93

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 13 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code >
SIK_circuit13_relays

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 65 of 93

/*****************>I<***
KoK K K ok k K

* SparkFun Inventor's Kit

* Example sketch 13
*

* RELAYS

* A relay is a electrically-controlled mechanical switch. It
has an

* electro-magnetic coil that either opens or closes a switc
h. Because

* it is a physical switch, a relay can turn on and off large
devices

* like BIG motors, spot lights, and lamps.

*

* To create enough current to excite the electro-magnet, we n
eed to use

* the transistor circuit from the last example. Each time we
excite the relay

* you should hear an audible clicking sound of the switch.

*

* This sketch was written by SparkFun Electronics,

* with lots of help from the Arduino community.

* This code is completely free for any use.

Visit http://learn.sparkfun.com/sik for SIK information.
* Visit http://www.arduino.cc to learn about the Arduino.

* Version 2.0 6/2012 MDG

* Version 2.1 8/2014 BCH
sk 5k 5k 5k 3k 3k 3k 3 ok ok ok oK oK 5K 5k 5k 5k 5k 3k 3k 3k 3k 3k ok ok ok oK oK 5K 5K 5k 5k 3k 3k 3k 3k ok ok oK oK oK 5K 5k 5k 5k 5k 5k 3k 3k 3k %k ok o ok ok oK oK ok ok 5k k

AR [

const int relayPin = 2; // This pin drives the transistor
(which drives the relay)

const int timeDelay = 1000; // delay in ms for on and off phas
es

// You can make timeDelay shorter, but note that relays, being
// mechanical devices, will wear out quickly if you try to dri

ve
// them too fast.

void setup()
{

pinMode(relayPin, OUTPUT); // set pin as an output

void loop()

{
digitalWrite(relayPin, HIGH); // turn the relay on
delay(timeDelay); // wait for one second

digitalWrite(relayPin, LOW); // turn the relay off

delay(timeDelay); // wait for one second

Code To Note

digitalWrite(relayPin, HIGH);

Page 66 of 93

When we turn on the transistor, which in turn energizes the relay’s coil, the
relay’s switch contacts are closed. This connects the relay’s COM pin to the
NO (Normally Open) pin. Whatever you've connected using these pins will
turn on. (Here we’re using LEDs, but this could be almost anything.)

digitalWrite(relayPin, LOW);

The relay has an additional contact called NC (Normally Closed). The NC
pin is connected to the COM pin when the relay is OFF. You can use either
pin depending on whether something should be normally on or normally off.
You can also use both pins to alternate power to two devices, much like
railroad crossing warning lights.

What You Should See

You should be able to hear the relay contacts click, and see the two LEDs
alternate illuminating at 1-second intervals. If you don’t, double-check that
you have assembled the circuit correctly, and uploaded the correct sketch
to the board. Also, see the troubleshooting section.

Real World Application

Garage door openers use relays to operate. You might be able to hear the
clicking if you listen closely.

Troubleshooting
LEDs Not Lighting

Double-check that you've plugged them in correctly. The longer lead (and
non-flat edge of the plastic flange) is the positive lead.

No Clicking Sound

The transistor or coil portion of the circuit isn’t quite working. Check the
transistor is plugged in the right way.

Not Quite Working

The included relays are designed to be soldered rather than used in a
breadboard. As such you may need to press it in to ensure it works (and it
may pop out occasionally).

When you're building the circuit be careful not to mix up the temperature
sensor and the transistor, they’re almost identical.

Experiment 14: Using a Shift Register

Introduction

Page 67 of 93

Now we are going to step into the world of ICs (integrated circuits). In this
circuit, you'll learn all about using a shift register (also called a serial-to-
parallel converter). The shift register will give your RedBoard or Arduino
Uno R3 an additional eight outputs, using only three pins on your board.
For this circuit, you'll practice by using the shift register to control eight
LEDs.

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

* 19x Jumper Wires

» 8x 330Q Resistor

+ 8x LEDs A

+ 1x Shift Register 8-Bit - SN74HC595) A

Suggested Reading

Before continuing on with this experiment, we recommend you be familiar
with the concepts in the following tutorial:

» Shift Registers
* Integrated Circuits

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

For the shift register, align notch on top, in-between “e1” and “f1” on the
breadboard. The notch indicates where pin 1 is.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Page 68 of 93

fritzing

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 14 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code >
SIK_circuit14_shiftRegister

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 69 of 93

/*
SparkFun Inventor's Kit
Example sketch 14
SHIFT REGISTER

Use a shift register to turn three pins into eight (or mor
el)

outputs

An integrated circuit ("IC"), or "chip", is a self-contained

circuit built into a small plastic package. (If you look clo
sely

at your Arduino board you'll see a number of ICs.) There are

thousands of different types of ICs available that you can u
se

to perform many useful functions.

The 74HC595 shift register in your kit is an IC that has eig
ht

digital outputs. To use these outputs, we'll use a new inter
face

called SPI (Serial Peripheral Interface). It's like the TX a
nd

RX you're used to, but has an additional "clock" line that

controls the speed of the data transfer. Many parts use SPI

for communications, so the Arduino offers simple commands ca
lled

shiftIn() and shiftOut() to access these parts.

This IC lets you use three digital pins on your Arduino to

control eight digital outputs on the chip. And if you need

even more outputs, you can daisy-chain multiple shift regist
ers

together, allowing an almost unlimited number of outputs fro

the same three Arduino pins! See the shift register datashee
for details:
http://www.sparkfun.com/datasheets/IC/SN74HC595.pdf

This sketch was written by SparkFun Electronics,

with lots of help from the Arduino community.

This code is completely free for any use.

Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.

Visit http://www.arduino.cc to learn about the Arduino.
Version 2.0 6/2012 MDG

*/

// Pin definitions:
// The 74HC595 uses a type of serial connection called SPI
// (Serial Peripheral Interface) that requires three pins:

int datapin = 2;
int clockpin = 3;
int latchpin = 4;

// We'll also declare a global variable for the data we're
// sending to the shift register:

byte data = 0;

void setup()

{
// Set the three SPI pins to be outputs:

Page 70 of 93

pinMode(datapin, OUTPUT);

pinMode(clockpin, OUTPUT);

pinMode(latchpin, OUTPUT);
}

void loop()
{

// To try the different functions below, uncomment the one
// you want to run, and comment out the remaining ones to
// disable them from running.

oneAfterAnother(); // All on, all off
//oneOnAtATime(); // Scroll down the line
//pingPong(); // Like above, but back and forth
//randomLED(); // Blink random LEDs
//marquee();
//binaryCount(); // Bit patterns from @ to 255

}

void shiftWrite(int desiredPin, boolean desiredState){

// This function lets you make the shift register outputs
// HIGH or LOW in exactly the same way that you use digitalWri
te().

bitWrite(data,desiredPin,desiredState); //Change desired bi
t to @ or 1 in "data”

// Now we'll actually send that data to the shift register.
// The shiftoOut() function does all the hard work of

// manipulating the data and clock pins to move the data
// into the shift register:

shiftOut(datapin, clockpin, MSBFIRST, data); //Send "data" t
o the shift register

//Toggle the latchPin to make "data" appear at the outputs
digitalWrite(latchpin, HIGH);
digitalWrite(latchpin, LOW);

void oneAfterAnother()

{

// This function will turn on all the LEDs, one-by-one,
// and then turn them off all off, one-by-one.

int index;
int delayTime = 100; // Time (milliseconds) to pause betwee
n LEDs
// Make this smaller for faster switchi
ng

// Turn all the LEDs on
for(index = @; index <= 7; index++)

{

Page 71 of 93

shiftWrite(index,
delay(delayTime);
}

HIGH);

// Turn all the LEDs off
for(index = 7; index >= @; index--)

{
shiftWrite(index,
delay(delayTime);

}

void oneOnAtATime()
{

LOW) ;

// This function will turn the LEDs on and off, one-by-one.

int index;

int delayTime = 100;

n LEDs

ng

// step through the

// Time (milliseconds) to pause betwee

// Make this smaller for faster switchi

LEDs, from © to 7

for(index = @; index <= 7; index++)

HIGH); // turn LED on
// pause to slow down the sequence
LOW); // turn LED off

// This function turns on the LEDs, one at a time, in both dir

{
shiftWrite(index,
delay(delayTime);
shiftWrite(index,
}
}
void pingPong()
{
ections.
int index;
int delayTime = 100;
n LEDs
ng

// step through the

// time (milliseconds) to pause betwee

// make this smaller for faster switchi

LEDs, from © to 7

for(index = @; index <= 7; index++)

{
shiftWrite(index,
delay(delayTime);
shiftWrite(index,

// step through the

HIGH); // turn LED on
// pause to slow down the sequence
LOW); // turn LED off

LEDs, from 7 to ©

for(index = 7; index >= @; index--)

{
shiftWrite(index,
delay(delayTime);
shiftWrite(index,

}

void randomLED()

{
// This function will
int index;

HIGH); // turn LED on
// pause to slow down the sequence
LOW); // turn LED off

randomly turn on and off LEDs.

Page 72 of 93

int delayTime = 100; // time (milliseconds) to pause betwee
n LEDs
// make this smaller for faster switchi
ng

index = random(8); // pick a random number between © and
7

shiftWrite(index, HIGH); // turn LED on

delay(delayTime); // pause to slow down the sequence
shiftWrite(index, LOW); // turn LED off
}
void marquee()
{
// This function will mimic "chase lights" like those around s
igns.
int index;

int delayTime = 200; // Time (milliseconds) to pause betwee
n LEDs
// Make this smaller for faster switchi
ng

// Step through the first four LEDs
// (We'll light up one in the lower 4 and one in the upper
4)

for(index = @; index <= 3; index++)

{
shiftWrite(index, HIGH); // Turn a LED on
shiftWrite(index+4, HIGH); // Skip four, and turn that LE

D on

delay(delayTime); // Pause to slow down the sequence
shiftWrite(index, LOW); // Turn both LEDs off
shiftWrite(index+4, LOW);

}

void binaryCount()

{
// This function creates a visual representation of the on/of
f pattern

// of bits in a byte.

int delayTime = 1000; // time (milliseconds) to pause betwee
n LEDs
// make this smaller for faster switch
ing

// Send the data byte to the shift register:

shiftOut(datapin, clockpin, MSBFIRST, data);

// Toggle the latch pin to make the data appear at the outpu
ts:

digitalWrite(latchpin, HIGH);
digitalWrite(latchpin, LOW);

// Add one to data, and repeat!

// (Because a byte type can only store numbers from @ to 25
5)

// if we add more than that, it will "roll around" back to ©

// and start over).

Page 73 of 93

data++;
// Delay so you can see what's going on:

delay(delayTime);
}

Code To Note
shiftOut(datapin, clockpin, MSBFIRST, data);

You'll communicate with the shift register (and a lot of other parts) using an
interface called SPI, or Serial Peripheral Interface. This interface uses a
data line and a separate clock line that work together to move data into or
out of the Arduino at high speed. The MSBFIRST parameter specifies the
order in which to send the individual bits, in this case we're sending the
Most Significant Bit first.

bitWrite(data, desiredPin, desiredState);

Bits are the smallest possible piece of memory in a computer; each one can
store either a “1” or a “0”. Larger numbers are stored as arrays of bits.
Sometimes we want to manipulate these bits directly, for example now
when we’re sending eight bits to the shift register and we want to make
them 1 or 0 to turn the LEDs on or off. The Arduino has several commands,
such as bitWrite() , that make this easy to do.

What You Should See

You should see the LEDs light up similarly to experiment 4 (but this time,
you're using a shift register). If they aren’t, make sure you have assembled
the circuit correctly and verified and uploaded the code to your board. See
the troubleshooting section.

Real World Application

Similar to experiment 4, a scrolling marquee display delivers a message
with multiple LEDs. Essentially the same task the shift register achieves
here in experiment 14. You might be asking yourself, “why bother using a
shift register if we already have more than 8 outputs?” One reason is that
you may have a project where you've already used up most of your output
pins for other uses. A shift register allows you to add eight more output pins
for the price of only three!

Page 74 of 93

Troubleshooting
The Arduino’s power LED goes out

This happened to us a couple of times, it happens when the chip is inserted
backward. If you fix it quickly nothing will break.

Not Quite Working

Sorry to sound like a broken record, but it is probably something as simple
as a crossed wire.

Frustration

Shoot us an e-mail, this circuit is both simple and complex at the same
time. We want to hear about problems you have so we can address them in
future editions: techsupport@sparkfun.com

Experiment 15: Using an LCD

Introduction

In this circuit, you’ll learn about how to use an LCD. An LCD, or liquid
crystal display, is a simple screen that can display commands, bits of
information, or readings from your sensor - all depending on how you
program your board. In this circuit, you'll learn the basics of incorporating
an LCD into your project.

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

* 1x Breadboard

* 16x Jumper Wires

* 1x Potentiometer

+ 1x LCD with headers A

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

Page 75 of 93

Open the Sketch

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 15 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code >
SIK_circuit15_LCDscreen

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 76 of 93

/*

SparkFun Inventor's Kit

Example sketch 15

LIQUID CRYSTAL DISPLAY (LCD)
A Liquid Crystal Display (LCD) is a sophisticated module
that can be used to display text or numeric data. The displa

y
included in your SIK features two lines of 16 characters, an

a backlight so it can be used at night.
If you've been using the Serial Monitor to output data,
you'll find that a LCD provides many of the same benefits
without needing to drag a large computer around.
This sketch will show you how to connect an LCD to your Ardu
ino
and display any data you wish.
This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about the Arduino.
Version 1.0 2/2013 MDG
*/

// Load the LiquidCrystal library, which will give us
// commands to interface to the LCD:

#include <LiquidCrystal.h>

// Initialize the library with the pins we're using.
// (Note that you can use different pins if needed.)
// See http://arduino.cc/en/Reference/LiquidCrystal
// for more information:

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

lcd.begin(16, 2); //Initialize the 16x2 LCD

lcd.clear(); //Clear any old data displayed on the LCD

lcd.print("hello, world!"); // Display a message on the LC
D!
}
void loop()
{

lcd.setCursor(0, 1); //Set the (invisible) cursor to co
lumn @,

// row 1.
lcd.print(millis() / 1000); //Print the number of seconds
//since the Arduino last rese

t.

Page 77 of 93

Code To Note

#include <LiquidCrystal.h>

This bit of code tells your Arduino IDE to include the library for a simple
LCD display. Without it, none of the commands will work, so make sure you
include it!

lcd.print(“hello, world!”);

This is the first time you'll fire something up on your screen. You may need
to adjust the contrast to make it visible. Twist the potentiometer until you
can clearly see the text!

What You Should See

Initially, you should see the words “hello, world!” pop up on your LCD.
Remember you can adjust the contrast using the potentiometer if you can’t
make out the words clearly. If you have any issues, make sure your code is
correct and double-check your connections.

Real World Application

LCDs are everywhere! From advanced LCDs like your television, to simple
notification screens, this is a very common and useful display!

Troubleshooting
The Screen is Blank or Completely Lit?

Fiddle with the contrast by twisting the potentiometer. If it's incorrectly
adjusted, you won’t be able to read the text.

Not Working At All?

Double check the code, specifically that you include the LCD library.
Screen Is Flickering

Double check your connections to your breadboard and Arduino.
Black Rectangles in First Row?

If you see 16x black rectangles (like l) on the first row, it may be due to
the jumper wires being loose on the breadboard. This is normal and it can
happen with other LCDs wired in parallel with an Arduino. This example
should work as expected if you make sure that the wires are fully inserted
to the breadboard, hitting the reset button the Arduino, and adjusting the
contrast using the potentiometer.

Experiment 16: Simon Says

Page 78 of 93

Introduction

Now that we’ve learned all the basics behind the components in the SIK
experiments, let’s put them all together to make something fun! This circuit
will show you how to create your own Simon Says game. Using some
LEDs, some buttons, a buzzer, and some resistors, you can create this and
other exciting games with the RedBoard or Arduino Uno R3.

Parts Needed
You will need the following parts:

* 1x RedBoard + USB mini-B Cable or Arduino Uno R3 + USB A-to-B
Cable

1x Breadboard

17x Jumper Wires

4x LEDs A

1x Piezo Buzzer

4x 330Q Resistors

4x Push Buttons A

Hardware Hookup

Ready to start hooking everything up? Check out the Fritzing diagram
below, to see how everything is connected.

Polarized Pay special attention to the component’s markings
Components A indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Fritzing Diagram for RedBoard

Having a hard time seeing the circuit? Click on the Fritzing diagram to see a
bigger image.

Fritzing Diagram for Arduino

fritzing

Open the Sketch

Page 79 of 93

Open Up the Arduino IDE software on your computer. Coding in the
Arduino language will control your circuit. Open the code for Circuit 16 by
accessing the “SIK Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > SIK Guide Code >
SIK_circuit16_simonGame

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 80 of 93

/*
SparkFun Inventor's Kit
Example sketch 16

SIMON SAYS

Simon Says is a memory game. Start the game by pressing one o
f the four buttons. When a button lights up,

press the button, repeating the sequence. The sequence will g
et longer and longer. The game is won after

13 rounds.

Generates random sequence, plays music, and displays button 1
ights.

Simon tones from Wikipedia

- A (red, upper left) - 440Hz - 2.272ms - 1.136ms pulse

- a (green, upper right, an octave higher than A) - 880Hz -
1.136ms,

0.568ms pulse

- D (blue, lower left, a perfect fourth higher than the uppe
r left)

587.33Hz - 1.702ms - ©.851ms pulse

- G (yellow, lower right, a perfect fourth higher than the lo
wer left) -

784Hz - 1.276ms - 0.638ms pulse

Simon Says game originally written in C for the PIC16F88.
Ported for the ATmegal68, then ATmega328, then Arduino 1.0.
Fixes and cleanup by Joshua Neal <joshua[at]trochotron.com>
This sketch was written by SparkFun Electronics,

with lots of help from the Arduino community.

This code is completely free for any use.

Visit http://www.arduino.cc to learn about the Arduino.

*/

/***

* Public Constants
***/
#define NOTE_B@ 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1l 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#tdefine NOTE_F2 87
#define NOTE_FS2 93
#tdefine NOTE_G2 98
#define NOTE_GS2 104
#tdefine NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147

Page 81 of 93

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#tdefine
#define
#tdefine
#define
#tdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#tdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

NOTE_DS3 156
NOTE_E3 165
NOTE_F3 175
NOTE_FS3 185
NOTE_G3 196
NOTE_GS3 208
NOTE_A3 220
NOTE_AS3 233
NOTE_B3 247
NOTE_C4 262
NOTE_CS4 277
NOTE_D4 294
NOTE_DS4 311
NOTE_E4 330
NOTE_F4 349
NOTE_FS4 370
NOTE_G4 392
NOTE_GS4 415
NOTE_A4 440
NOTE_AS4 466
NOTE_B4 494
NOTE_C5 523
NOTE_CS5 554
NOTE_D5 587
NOTE_DS5 622
NOTE_E5 659
NOTE_F5 698
NOTE_FS5 740
NOTE_G5 784
NOTE_GS5 831
NOTE_AS 880
NOTE_AS5 932
NOTE_B5 988
NOTE_C6 1047
NOTE_CS6 1109
NOTE_D6 1175
NOTE_DS6 1245
NOTE_E6 1319
NOTE_F6 1397
NOTE_FS6 1480
NOTE_G6 1568
NOTE_GS6 1661
NOTE_A6 1760
NOTE_AS6 1865
NOTE_B6 1976
NOTE_C7 2093
NOTE_CS7 2217
NOTE_D7 2349
NOTE_DS7 2489
NOTE_E7 2637
NOTE_F7 2794
NOTE_FS7 2960
NOTE_G7 3136
NOTE_GS7 3322
NOTE_A7 3520
NOTE_AS7 3729
NOTE_B7 3951
NOTE_C8 4186
NOTE_CS8 4435
NOTE_D8 4699
NOTE_DS8 4978

CHOICE_OFF
CHOICE_NONE

@ //Used to control LEDs

0 //Used to check buttons

CHOICE_RED (1 << ©)

Page 82 of 93

#define CHOICE_GREEN (1 << 1)
#define CHOICE_BLUE (1 << 2)
#define CHOICE_YELLOW (1 << 3)

#define LED_RED 10
#define LED_GREEN 3
#define LED_BLUE 13
#define LED_YELLOW 5

// Button pin definitions
#define BUTTON_RED 9
#define BUTTON_GREEN 2
#define BUTTON_BLUE 12
#define BUTTON_YELLOW 6

// Buzzer pin definitions
#define BUZZER1 4
#define BUZZER2 7

// Define game parameters

#define ROUNDS_TO_WIN 13 //Number of rounds to succesfull
y remember before you win. 13 is do-able.

#define ENTRY_TIME_LIMIT 3000 //Amount of time to press a bu
tton before game times out. 3000ms = 3 sec

#define MODE_MEMORY ©
#define MODE_BATTLE 1
#define MODE_BEEGEES 2

// Game state variables

byte gameMode = MODE_MEMORY; //By default, let's play the memo
ry game

byte gameBoard[32]; //Contains the combination of buttons as w
e advance

byte gameRound = @; //Counts the number of succesful rounds th
e player has made it through

void setup()
{

//Setup hardware inputs/outputs. These pins are defined in t
he hardware_versions header file

//Enable pull ups on inputs

pinMode (BUTTON_RED, INPUT_PULLUP);
pinMode (BUTTON_GREEN, INPUT_PULLUP);
pinMode (BUTTON_BLUE, INPUT_PULLUP);
pinMode (BUTTON_YELLOW, INPUT_PULLUP);

pinMode (LED_RED, OUTPUT);
pinMode(LED_GREEN, OUTPUT);
pinMode(LED_BLUE, OUTPUT);
pinMode(LED_YELLOW, OUTPUT);

pinMode (BUZZER1, OUTPUT);
pinMode (BUZZER2, OUTPUT);

//Mode checking
gameMode = MODE_MEMORY; // By default, we're going to play t
he memory game

// Check to see if the lower right button is pressed
if (checkButton() == CHOICE_YELLOW) play_beegees();

// Check to see if upper right button is pressed
if (checkButton() == CHOICE_GREEN)

Page 83 of 93

Page 84 of 93

gameMode = MODE_BATTLE; //Put game into battle mode

//Turn on the upper right (green) LED
setLEDs (CHOICE_GREEN);
toner (CHOICE_GREEN, 150);

setLEDs(CHOICE_RED | CHOICE_BLUE | CHOICE_YELLOW); // Tur
n on the other LEDs until you release button

while(checkButton() != CHOICE_NONE) ; // Wait for user to
stop pressing button

//Now do nothing. Battle mode will be serviced in the mai
n routine

}

play_winner(); // After setup is complete, say hello to the
world

}

void loop()
{

attractMode(); // Blink lights while waiting for user to pre
ss a button

// Indicate the start of game play

setLEDs(CHOICE_RED | CHOICE_GREEN | CHOICE_BLUE | CHOICE_YEL
LOW); // Turn all LEDs on

delay(1000);

setLEDs (CHOICE_OFF); // Turn off LEDs

delay(250);

if (gameMode == MODE_MEMORY)

{
// Play memory game and handle result
if (play_memory() == true)
play_winner(); // Player won, play winner tones
else
play_loser(); // Player lost, play loser tones
}
if (gameMode == MODE_BATTLE)
{
play_battle(); // Play game until someone loses
play_loser(); // Player lost, play loser tones
}
}
//-=-=-=-=-=-=-=-=Z-=-=-=-=-=-=-Z-=-=Z-=-=-=-=-=-=-=-=-=-=-=-=-=

//The following functions are related to game play only

// Play the regular memory game
// Returns @ if player loses, or 1 if player wins
boolean play_memory(void)
{
randomSeed(millis()); // Seed the random generator with rand
om amount of millis()

gameRound = @; // Reset the game to the beginning
while (gameRound < ROUNDS_TO_WIN)

{
add_to_moves(); // Add a button to the current moves, the

n play them back
playMoves(); // Play back the current game board

// Then require the player to repeat the sequence.
for (byte currentMove = @ ; currentMove < gameRound ; curr
entMove++)
{
byte choice = wait_for_button(); // See what button the
user presses

if (choice == @) return false; // If wait timed out, pla
yer loses

if (choice != gameBoard[currentMove]) return false; // I
f the choice is incorect, player loses

}

delay(1000); // Player was correct, delay before playing m
oves

}

return true; // Player made it through all the rounds to wi
n!

// Play the special 2 player battle mode

// A player begins by pressing a button then handing it to th
e other player

// That player repeats the button and adds one, then passes ba
ck.

// This function returns when someone loses

boolean play_battle(void)

{

gameRound = @; // Reset the game frame back to one frame

while (1) // Loop until someone fails
{
byte newButton = wait_for_button(); // Wait for user to in
put next move
gameBoard[gameRound++] = newButton; // Add this new butto
n to the game array

// Then require the player to repeat the sequence.
for (byte currentMove = @ ; currentMove < gameRound ; curr
entMove++)

{

byte choice = wait_for_button();

if (choice == @) return false; // If wait timed out, pla
yer loses.

if (choice != gameBoard[currentMove]) return false; // I
f the choice is incorect, player loses.

}

delay(100); // Give the user an extra 100ms to hand the ga
me to the other player
}

return true; // We should never get here

// Plays the current contents of the game moves
void playMoves(void)

Page 85 of 93

Page 86 of 93

{
for (byte currentMove = @ ; currentMove < gameRound ; curren
tMove++)
{
toner(gameBoard[currentMove], 150);
// Wait some amount of time between button playback
// Shorten this to make game harder
delay(150); // 150 works well. 75 gets fast.
¥
}
// Adds a new random button to the game sequence, by sampling
the timer
void add_to_moves(void)
{
byte newButton = random(@, 4); //min (included), max (exlude
d)

// We have to convert this number, © to 3, to CHOICEs
if(newButton == @) newButton = CHOICE_RED;

else if(newButton == 1) newButton = CHOICE_GREEN;
else if(newButton == 2) newButton = CHOICE_BLUE;

else if(newButton == 3) newButton = CHOICE_YELLOW;

gameBoard[gameRound++] = newButton; // Add this new button t
o the game array

//The following functions control the hardware

// Lights a given LEDs
// Pass in a byte that is made up from CHOICE_RED, CHOICE_YELL

oW, etc
void setLEDs(byte leds)
{

if ((leds & CHOICE_RED) != @)
digitalWrite(LED_RED, HIGH);
else
digitalWrite(LED_RED, LOW);

if ((leds & CHOICE_GREEN) != @)
digitalWrite(LED_GREEN, HIGH);
else
digitalWrite(LED_GREEN, LOW);

if ((leds & CHOICE_BLUE) != @)
digitalWrite(LED_BLUE, HIGH);
else
digitalWrite(LED_BLUE, LOW);

if ((leds & CHOICE_YELLOW) != 0)
digitalWrite(LED_YELLOW, HIGH);
else
digitalWrite(LED_YELLOW, LOW);

// Wait for a button to be pressed.
// Returns one of LED colors (LED_RED, etc.) if successful, @
if timed out
byte wait_for_button(void)
{

long startTime = millis(); // Remember the time we started t
he this loop

while ((millis() - startTime) < ENTRY_TIME_LIMIT) // Loop u
ntil too much time has passed

{
byte button = checkButton();
if (button != CHOICE_NONE)
{
toner(button, 150); // Play the button the user just pre
ssed

while(checkButton() != CHOICE_NONE) ; // Now let's wai
t for user to release button

delay(10); // This helps with debouncing and accidental
double taps

return button;

return CHOICE_NONE; // If we get here, we've timed out!

}

// Returns a '1' bit in the position corresponding to CHOICE_R
ED, CHOICE_GREEN, etc.
byte checkButton(void)
{

if (digitalRead(BUTTON_RED) == @) return(CHOICE_RED);

else if (digitalRead(BUTTON_GREEN) == @) return(CHOICE_GREE
N);

else if (digitalRead(BUTTON_BLUE) == @) return(CHOICE_BLU
E);

else if (digitalRead(BUTTON_YELLOW) == @) return(CHOICE_YELL
oW);

return(CHOICE_NONE); // If no button is pressed, return none

// Light an LED and play tone

// Red, upper left: 440Hz - 2.272ms - 1.136ms pulse
// Green, upper right: 880Hz - 1.136ms - 0.568ms pulse
// Blue, lower left: 587.33Hz - 1.702ms - 0.851ms pulse

// Yellow, lower right: 784Hz - 1.276ms - 0.638ms pulse
void toner(byte which, int buzz_length_ms)

{

setLEDs(which); //Turn on a given LED

//Play the sound associated with the given LED

switch(which)

{

case CHOICE_RED:
buzz_sound(buzz_length_ms, 1136);
break;

case CHOICE_GREEN:
buzz_sound(buzz_length_ms, 568);
break;

case CHOICE_BLUE:
buzz_sound(buzz_length_ms, 851);
break;

case CHOICE_YELLOW:
buzz_sound(buzz_length_ms, 638);
break;

Page 87 of 93

setLEDs(CHOICE_OFF); // Turn off all LEDs

// Toggle buzzer every buzz_delay_us, for a duration of buzz_1

ength_ms.
void buzz_sound(int buzz_length_ms, int buzz_delay_us)

{

// Convert total play time from milliseconds to microseconds

long buzz_length_us = buzz_length_ms * (long)1000;

// Loop until the remaining play time is less than a single

buzz_delay_us
while (buzz_length_us > (buzz_delay_us * 2))
{

buzz_length_us -= buzz_delay us * 2; //Decrease the remain

ing play time

// Toggle the buzzer at various speeds
digitalWrite(BUZZER1, LOW);
digitalWrite(BUZZER2, HIGH);
delayMicroseconds(buzz_delay_us);

digitalWrite(BUZZER1, HIGH);
digitalWrite(BUZZER2, LOW);
delayMicroseconds(buzz_delay_us);

// Play the winner sound and lights
void play_winner(void)

{
setLEDs (CHOICE_GREEN | CHOICE_BLUE);
winner_sound();
setLEDs (CHOICE_RED | CHOICE_YELLOW);
winner_sound();
setLEDs(CHOICE_GREEN | CHOICE_BLUE);
winner_sound();
setLEDs(CHOICE_RED | CHOICE_YELLOW);
winner_sound();

}

// Play the winner sound

// This is just a unique (annoying) sound we came up with, the

re is no magic to it
void winner_sound(void)
{
// Toggle the buzzer at various speeds
for (byte x = 250 ; x > 70 ; x--)
{
for (bytey =0 ; y < 3 ; y++)
{
digitalWrite(BUZZER2, HIGH);
digitalWrite(BUZZER1, LOW);
delayMicroseconds(x);

digitalWrite(BUZZER2, LOW);
digitalWrite(BUZZER1, HIGH);
delayMicroseconds(x);

// Play the loser sound/lights
void play_loser(void)

Page 88 of 93

Page 89 of 93

setLEDs (CHOICE_RED | CHOICE_GREEN);
buzz_sound(255, 1500);

setLEDs (CHOICE_BLUE | CHOICE_YELLOW);
buzz_sound(255, 1500);

setLEDs(CHOICE_RED | CHOICE_GREEN);
buzz_sound(255, 1500);

setLEDs (CHOICE_BLUE | CHOICE_YELLOW);
buzz_sound(255, 1500);

// Show an "attract mode" display while waiting for user to pr
ess button.
void attractMode(void)
{
while(1)
{
setLEDs (CHOICE_RED);
delay(100);
if (checkButton() != CHOICE_NONE) return;

setLEDs (CHOICE_BLUE);
delay(100);
if (checkButton() != CHOICE_NONE) return;

setLEDs (CHOICE_GREEN);
delay(100);
if (checkButton() != CHOICE_NONE) return;

setLEDs (CHOICE_YELLOW);

delay(100);
if (checkButton() != CHOICE_NONE) return;
}
}
B e e
// The following functions are related to Beegees Easter Egg o
nly

// Notes in the melody. Each note is about an 1/8th note,
"@"s are rests.
int melody[] = {
NOTE_G4, NOTE_A4, @, NOTE_C5, @, @, NOTE_G4, 0, 0, 0,
NOTE_E4, ©, NOTE_D4, NOTE_E4, NOTE_G4, O,
NOTE_D4, NOTE_E4, @, NOTE_G4, 0, O,
NOTE_D4, @, NOTE_E4, @, NOTE_G4, @, NOTE_A4, 0, NOTE_C5, @};

int noteDuration = 115; // This essentially sets the tempo, 11
5 is just about right for a disco groove :)

int LEDnumber = ©; // Keeps track of which LED we are on durin
g the beegees loop

// Do nothing but play bad beegees music
// This function is activated when user holds bottom right but
ton during power up
void play_beegees()
{
//Turn on the bottom right (yellow) LED
setLEDs (CHOICE_YELLOW);
toner (CHOICE_YELLOW, 150);

setLEDs(CHOICE_RED | CHOICE_GREEN | CHOICE_BLUE); // Turn o

n the other LEDs until you release button

while(checkButton() != CHOICE_NONE) ; // Wait for user to st
op pressing button

setLEDs(CHOICE_NONE); // Turn off LEDs
delay(1000); // Wait a second before playing song

digitalWrite(BUZZER1, LOW); // setup the "BUZZER1" side of t
he buzzer to stay low, while we play the tone on the other pi
n.

while(checkButton() == CHOICE_NONE) //Play song until you pr
ess a button
{
// iterate over the notes of the melody:
for (int thisNote = ©; thisNote < 32; thisNote++) {
changeLED();
tone(BUZZER2, melody[thisNote],noteDuration);
// to distinguish the notes, set a minimum time between

them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.30;
delay(pauseBetweenNotes);
// stop the tone playing:
noTone (BUZZER2);

}
}
}

// Each time this function is called the board moves to the ne
xt LED
void changelLED(void)

{
setLEDs(1 << LEDnumber); // Change the LED

LEDnumber++; // Goto the next LED
if (LEDnumber > 3) LEDnumber = @; // Wrap the counter if need
ed

}

Code To Note
#define

The #define statementis used to create constants in your code.
Constants are variables that will likely only have one value during the
lifespan of your code. Thus, you can assign constants a value, and then

use them throughout your code wherever. Then, if you need to change that
value, you can change that one line instead of going through all the code to

find every instance of that variable.
byte

Bytes are another variable type. In the world of computing, a byte is a

chunk of space that contains 8 bits, and a bit is a single binary value. Binary
is another way of counting and uses only 1’s and 0’s. So a byte can hold all

1’s: 11111111, all 0’s: 00000000, or a combination of the two: 10010110.

What You Should See

Once the code is uploaded, the buzzer will beep a few times, and all four
LEDs should begin blinking. The game begins once you press any of the
four buttons. Once the game has been started, a random LED will blink.

Page 90 of 93

Press the button associated with that color LED to replicate the pattern.
With a successful guess, the pattern will repeat, this time adding another
random LED. The player is to follow the pattern for as long as possible, with
each successful guess resulting in an additional layer of complexity added
to the original pattern.

Real World Application

Toys and Games, such as the original Simon from Milton Bradley, have
relied on electronics to provide fun and entertainment to children across the
world.

Troubleshooting
LEDs not working, but the buttons and sound do

If only half of you circuit is working, make sure you added the additional
wire from one ground rail to the other. Remember that breadboards have
two power rails on each side and that these can be connected, or bussed,
together to provide the power to both sides of the same circuit.

No Sound

Once the piezo buzzer is in the breadboard, it's hard to see the legs and to
which row they are connected. If you aren’t hearing any sound, make sure
your wires are on the same row as the piezo buzzer legs.

Game is Not Working

If everything starts up ok, but you're having trouble when it comes time to
play the game, you may have a button or two misplaced. Pay close
attention to which pin is connected to each button as it matters which button
is pressed when a particular color lights up.

Resources and Going Further

There are tons of sensors and shields you can hookup to an Arduino that
will help take your projects to the next level. Here’s some further reading
that may help you along in learning more about the world of electronics.

For more inspiration and ideas for working with your SIK, check out these
tutorials:

Page 91 of 93

SIK Keyboard Instrument
We can use the parts and concepts
in the SparkFun Invetor's Kit to
make a primitive keyboard
instrument.

Measuring Internal
Resistance of Batteries
Classroom STEM activity that has
students build a battery from a
lemon, measure the open and
closed circuit voltages, and
determine the battery's internal
resistance.

For more info on Arduino, check out these tutorials:

Installing Arduino
Installing an Arduino Library
Arduino Data Types

Arduino Comparison Guide
Arduino Shields

SparkFun Arduino Resources and Curriculum

SparkFun Adventures in Science

For more hardware related tutorials, give these a read:

» Breadboards
* Working with Wire
* How do | power my project?

We also have additional kits available that cover different microcontrollers,

development environments, and robotics.

SparkFun Inventor's Kit for
Intel® Edison
@ KIT-13742

SparkFun Inventor's Kit for

SparkFun Inventor's Kit for
RedBot
© ROB-12649

Page 92 of 93

Photon
@ KIT-13320

- ‘-lé &
O:*Q-\ “f ‘f‘
. .

Johnny-Five Inventor's Kit
© KIT-13847

5 71'::;:51@
2

SparkFun Inventor's Kit for
LabVIEW
© KIT-13271

Reference files are available here:

« Example code on GitHub
« Fritzing diagrams on GitHub
* PDF version of the Guide
» SIK Projects code on GitHub

Thanks for following along!

Raspberry Pi 3 Starter Kit
@ KIT-13826

mbed Starter Kit
© KIT-12968

‘}./

SparkFun Inventor's Kit for
MicroView
© KIT-13205

https://learn.sparkfun.com/tutorials/sik-experiment-guide-for-arduino---v33/all

Page 93 of 93

8/4/2017

