

# Thermally-Enhanced High Power RF LDMOS FET 208 W, 48 V, 746 – 960 MHz

#### Description

The PTRA094252FC is a 208-watt LDMOS FET intended for use in multi-standard cellular power amplifier applications in the 746 to 960 MHz frequency band. Features include input matching, high gain and thermally-enhanced package with earless flanges. Manufactured with Wolfspeed's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.



PTRA094252FC Package H-37248-4



#### **Features**

- Broadband internal input matching
- Asymmetrical Doherty design - Main : P<sub>1dB</sub> = 190 W Typ
  - Peak : P<sub>1dB</sub> = 250 W Typ
  - Typical Pulsed CW performance, 875 MHz, 48 V,
  - combined outputs
  - Output power at P1dB = 208 W
- Efficiency = 56%
- Gain = 18.7 dB
- Capable of handling 10:1 VSWR @48 V, 208 W (CW) output power
- Integrated ESD protection
- Human Body Model Class 2 (per ANSI/ESDA/ . JEDEC JS-001)
- Low thermal resistance
- Pb-free and RoHS compliant

### **RF Characteristics**

Single-carrier WCDMA Specifications (tested in Wolfspeed Doherty test fixture)

V<sub>DD</sub> = 48 V, I<sub>DQ</sub> = 550 mA, V<sub>GS (Peak)</sub> = (V<sub>GS</sub> @ I<sub>DQ</sub> = 770 mA) - 1.7 V, P<sub>OUT</sub> = 89 W avg, f = 875 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF

| Characteristic                | Symbol          | Min  | Тур   | Max | Unit |
|-------------------------------|-----------------|------|-------|-----|------|
| Gain                          | G <sub>ps</sub> | 17.5 | 18.5  |     | dB   |
| Drain Efficiency              | η <sub>D</sub>  | 46   | 48    |     | %    |
| Adjancent Channel Power Ratio | ACPR            |      | -30.0 | -28 | dBc  |

All published data at T<sub>CASE</sub> = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device-observe handling precautions!

#### DC Characteristics (each side)

| Characteristic                                                     | Conditions                                            | Symbol              | Min  | Тур  | Max  | Unit |
|--------------------------------------------------------------------|-------------------------------------------------------|---------------------|------|------|------|------|
| Drain-Source Breakdown Voltage                                     | $V_{GS} = 0 V, I_{DS} = 10 mA$                        | V(BR)DSS            | 110  | —    | _    | V    |
| Drain Leakage Current                                              | $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$         | I <sub>DSS</sub>    | _    | _    | 1    | μA   |
|                                                                    | $V_{DS} = 105 \text{ V}, V_{GS} = 0 \text{ V}$        | I <sub>DSS</sub>    | _    | —    | 10   | μA   |
| On-State Resistance (main)                                         | $V_{GS}$ = 10 V, $V_{DS}$ = 0.1 V                     | R <sub>DS(on)</sub> | _    | 0.07 | _    | Ω    |
| (peak)                                                             | $V_{GS}$ = 10 V, $V_{DS}$ = 0.1 V                     | R <sub>DS(on)</sub> | _    | 0.06 |      | Ω    |
| Operating Gate Voltage (main)                                      | V <sub>DS</sub> = 48 V, I <sub>DQ</sub> = 550 mA      | V <sub>GS</sub>     | 3.5  | 3.6  | 3.7  | V    |
| (peak)                                                             | $V_{DS} = 48 \text{ V}, \text{ I}_{DQ} = 0 \text{ A}$ | V <sub>GS</sub>     | 1.74 | 1.84 | 1.96 | V    |
| Gate Leakage Current $V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$ |                                                       | I <sub>GSS</sub>    | _    | _    | 1    | μA   |

#### **Maximum Ratings**

| Parameter                                                           | Symbol              | Value       | Unit |
|---------------------------------------------------------------------|---------------------|-------------|------|
| Drain-Source Voltage                                                | V <sub>DSS</sub>    | 110         | V    |
| Gate-Source Voltage                                                 | V <sub>GS</sub>     | 6 to +12    | V    |
| Operating Voltage                                                   | V <sub>DD</sub>     | 0 to +55    | V    |
| Junction Temperature                                                | TJ                  | 225         | °C   |
| Storage Temperature Range                                           | T <sub>STG</sub>    | -65 to +150 | °C   |
| Thermal Resistance (main, T <sub>CASE</sub> = 85°C, 105 W 1C WCDMA) | $R_{	ext{	heta}JC}$ | 0.45        | °C/W |
| (peak, T <sub>CASE</sub> = 85°C, 105 W 1C WCDMA)                    | $R_{	ext{	heta}JC}$ | 0.12        | °C/W |

1. Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range ( $V_{DD}$ ) specified above.

2. Parameters values can be affected by end application and product usage. Values may change over time.

#### **Ordering Information**

| Type and Version   | Order Code         | Package Description       | Shipping             |
|--------------------|--------------------|---------------------------|----------------------|
| PTRA094252FC V1 R0 | PTRA094252FC-V1-R0 | H-37248-4, earless flange | Tape & Reel, 50 pcs  |
| PTRA094252FC V1 R2 | PTRA094252FC-V1-R2 | H-37248-4, earless flange | Tape & Reel, 250 pcs |













## Load Pull Performance

|               |                  |                    | P <sub>1dB</sub> |                           |                         |                   |                  |              |                           |                         |                   |
|---------------|------------------|--------------------|------------------|---------------------------|-------------------------|-------------------|------------------|--------------|---------------------------|-------------------------|-------------------|
|               |                  |                    | Max Output Power |                           |                         |                   |                  | Ν            | lax PAE                   |                         |                   |
| Freq<br>[MHz] | <b>Ζs</b><br>[Ω] | <b>ΖΙ</b><br>[Ω]   | Gain<br>[dB]     | P <sub>OUT</sub><br>[dBm] | Р <sub>ОUT</sub><br>[W] | <b>PAE</b><br>[%] | <b>ΖΙ</b><br>[Ω] | Gain<br>[dB] | Р <sub>ОՍТ</sub><br>[dBm] | Р <sub>ОUT</sub><br>[W] | <b>PAE</b><br>[%] |
| 869           | 2.9 – j9         | 1.9 <i>–</i> j0.66 | 20.58            | 53.57                     | 227.5                   | 55                | 2.0 + j0.78      | 22.46        | 52.46                     | 176.3                   | 69.6              |
| 881           | 3.1 – j9.3       | 1.8 – j0.32        | 21.52            | 53.66                     | 232.4                   | 60.6              | 1.7 + j1.05      | 23.18        | 51.66                     | 146.4                   | 67.4              |
| 894           | 3.4 – j9.7       | 1.7 – j0.35        | 21.28            | 53.63                     | 230.8                   | 59.7              | 1.5 + j1.02      | 23           | 51.62                     | 145.4                   | 68.5              |

Main Side Load Pull Performance – Pulsed CW signal: 16  $\mu$ s, 10% duty cycle, 48 V, I<sub>DQ</sub> = 389 mA

Peak Side Load Pull Performance – Pulsed CW signal: 16  $\mu s,$  10% duty cycle, 48 V,  $I_{DQ}$  = 516 mA

|               |                  |                  | P <sub>1dB</sub> |                           |                         |            |                  |              |                           |                         |                   |
|---------------|------------------|------------------|------------------|---------------------------|-------------------------|------------|------------------|--------------|---------------------------|-------------------------|-------------------|
|               |                  |                  | Max Output Power |                           |                         |            |                  | М            | ax PAE                    |                         |                   |
| Freq<br>[MHz] | <b>Ζs</b><br>[Ω] | <b>ΖΙ</b><br>[Ω] | Gain<br>[dB]     | Р <sub>ОUT</sub><br>[dBm] | Р <sub>ОUT</sub><br>[W] | PAE<br>[%] | <b>ΖΙ</b><br>[Ω] | Gain<br>[dB] | Р <sub>ОUT</sub><br>[dBm] | Р <sub>ОUT</sub><br>[W] | <b>PAE</b><br>[%] |
| 869           | 2.6 – j9.7       | 1 – j1.2         | 19.88            | 55.59                     | 362.2                   | 53.8       | 1.21 – j0.16     | 21.86        | 53.55                     | 226.4                   | 67.5              |
| 881           | 2.9 – j10.4      | 1.4 – j1.7       | 19.95            | 55.47                     | 352.1                   | 53.6       | 1.17 – j0.2      | 22.06        | 53.61                     | 229.6                   | 67.2              |
| 894           | 3 – j10.6        | 1 – j1.3         | 19.84            | 55.46                     | 351.5                   | 54.2       | 0.95 – j0.28     | 21.81        | 53.59                     | 228.8                   | 68                |





Reference circuit assembly diagram (not to scale)

### Reference Circuit (cont.)

#### **Reference Circuit Assembly**

| DUT                                                                                       | TRA094252FC V1                                                                                  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Fixture Part No.                                                                     | TA/PTRA094252FC V1                                                                              |  |  |  |  |
| РСВ                                                                                       | Rogers 4360, 0.508 mm [0.020"] thick, 2 oz. copper, $\varepsilon_r$ = 3.66, $f$ = 860 – 880 MHz |  |  |  |  |
| Find Gerber files for this test fixture on the Wolfspeed Web site at www.wolfspeed.com/RF |                                                                                                 |  |  |  |  |

#### **Components Information**

| Component                                                                    | Description       | Manufacturer                       | P/N              |
|------------------------------------------------------------------------------|-------------------|------------------------------------|------------------|
| Input                                                                        |                   |                                    |                  |
| C101, C105, C107, C108                                                       | Capacitor, 43 pF  | ATC                                | ATC600F430FW250T |
| C102, C109                                                                   | Capacitor, 10 µF  | Taiyo Yuden                        | UMK325C7106MM-T  |
| C103                                                                         | Capacitor, 4.3 pF | ATC                                | ATC600F4R3AW250T |
| C104                                                                         | Capacitor, 1 pF   | ATC                                | ATC600F1R0AW250T |
| C106                                                                         | Capacitor, 4.7 pF | ATC                                | ATC600F4R7AW250T |
| R101, R102                                                                   | Resistor, 10 ohms | Panasonic Electronic Components    | ERJ-3GEYJ100V    |
| R103                                                                         | Resistor, 50 ohms | Richardson                         | C16A50Z4         |
| U1                                                                           | Hybrid coupler    | Anaren                             | X3C09P1-04S      |
| Output                                                                       |                   |                                    |                  |
| C201, C216, C221                                                             | Capacitor, 43 pF  | ATC                                | ATC600F430FW250T |
| C202, C203, C204, C205,<br>C206, C207, C208, C209,<br>C210, C211, C212, C213 | Capacitor, 10 µF  | Taiyo Yuden                        | UMK325C7106MM-T  |
| C214                                                                         | Capacitor, 3.3 pF | ATC                                | ATC600F3R3AW250T |
| C215                                                                         | Capacitor, 5.1 pF | ATC                                | ATC600F5R1AW250T |
| C217, C218                                                                   | Capacitor, 12 pF  | ATC                                | ATC600F120FW250T |
| C219                                                                         | Capacitor, 6.8 pF | ATC                                | ATC600F6R8BW250T |
| C220                                                                         | Capacitor, 0.6 pF | ATC                                | ATC600F0R6AW250T |
| C222, C223                                                                   | Capacitor, 470 µF | Cornell Dubilier Electronics (CDE) | SEK471M050ST     |



## Pinout Diagram (top view)



Lead connections for PTRA094252FC



# Package Outline Specifications



#### **Revision History**

| Revision | Date       | Data Sheet Type | Page         | Subjects (major changes since last revision)                                                                                                                                           |
|----------|------------|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01       | 2015-07-09 | Advance         | All          | Data Sheet reflects advance specification for product development                                                                                                                      |
| 01.1     | 2015-12-13 | Advance         | 2            | Updated Maximum Ranging                                                                                                                                                                |
| 02       | 2016-04-04 | Production      | All<br>All   | Data Sheet reflects released product specification<br>Revised all data and includes updated final specs, typical performance graphs, loadpull, refer-<br>ence circuit, package outline |
| 03       | 2016-06-02 | Production      | 1, 3<br>5, 6 | Revised graphs to 875Mhz<br>Revised reference circuit and component list                                                                                                               |
| 04       | 2016-10-18 | Production      | 1            | Revised P1dB for main & peak and HBM classification                                                                                                                                    |
| 04.1     | 2017-02-01 | Production      | 2            | Updated operating voltage and junction temperature                                                                                                                                     |
| 04.2     | 2017-12-08 | Production      | 2            | Updated drain-source breakdown voltage and drain-source voltage. Adding notes to max ratings table                                                                                     |
| 05       | 2018-06-22 | Production      | All          | Converted to Wolfspeed Data Sheet                                                                                                                                                      |

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com 919.407.7816

#### Notes

#### Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

Copyright © 2018 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Wolfspeed™ and the Wolfspeed logo are trademarks of Cree, Inc.