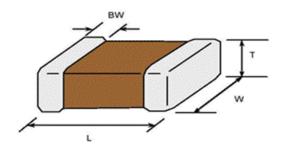


SPECIFICATION

(Reference sheet)

- Supplier : Samsung electro-mechanics - Samsung P/N : CL31C100JGFNNWE


Product : Multi-layer Ceramic Capacitor
 Description : CAP, 10pF, 500V, ± 5%, C0G, 1206

A. Samsung Part Number

<u>CL</u> <u>31</u> <u>C</u> <u>100</u> <u>J</u> <u>G</u> <u>F</u> <u>N</u> <u>N</u> <u>W</u> <u>E</u> ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪

1	Series	Samsung Multi-layer Ceramic Capacitor		
2	Size	1206 (inch code)	L: 3.20 ± 0.15 mm	W: 1.60 ± 0.15 mm
3	Dielectric	C0G	8 Inner electrode	Ni
4	Capacitance	10 pF	Termination	Cu
(5)	Capacitance	± 5%	Plating	Sn 100% (Pb Free)
	tolerance		Product	Normal
6	Rated Voltage	500 V	Special	Industrial (Network,etc)
7	Thickness	1.25 ± 0.15 mm	① Packaging	Embossed Type, 7" reel

B. Structure and dimension

Samsung P/N	Dimension(mm)				
(Lead Free)	L	W	Т	BW	
CL31C100JGFNNWE	3.20 ± 0.15	1.60 ± 0.15	1.25 ± 0.15	0.50 ± 0.30	

C. Samsung Reliability Test and Judgement condition

Rated Voltage 60~120 sec.		Performance	Test condition			
Rated Voltage 60~120 sec.	Capacitance	Within specified tolerance	1₩z±10% / 0.5~5Vrms			
Resistance Whichever is smaller Appearance No abnormal exterior appearance Microscop (X10) Withstanding No dielectric breakdown or mechanical breakdown 150% of the rated voltage Temperature COG Characteristics (From -55°C to 125°C, Capacitance change should be within ±30PPM/°C) Adhesive Strength No peeling shall be occur on the terminal electrode 500g×F, for 10±1 sec. Bending Strength Capacitance change: Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder Solder pot : 270±5°C, 10±1sec. Resistance to Capacitance change: Solder pot : 270±5°C, 10±1sec. Wibration Test Capacitance change: Amplitude: 1.5mm From 10Hz to 55Hz (return: 1min.) Wibration Test Capacitance change: Amplitude: 1.5mm From 10Hz to 55Hz (return: 1min.) Moisture Capacitance change: With rated voltage With rated voltage Moisture Capacitance change: With rated voltage Milliance in Internation With rated voltage With rated	Q	600 min				
No abnormal exterior appearance Microscop (X10)	Insulation	10,000Mohm or 500Mohm× <i>μ</i> F	Rated Voltage 60~120 sec.			
Withstanding No dielectric breakdown or mechanical breakdown 150% of the rated voltage Temperature C0G Characteristics (From -55℃ to 125℃, Capacitance change should be within ±30PPM/℃) Adhesive Strength of Termination No peeling shall be occur on the terminal electrode 500g×F, for 10±1 sec. Bending Strength within ±5% or ±0.5pF whichever is larger Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder Solderability Soldered newly 245±5℃, 3±0.3sec. (preheating : 80~120℃ for 10~30sec.) Resistance to Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Solder pot : 270±5℃, 10±1sec. Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours ′ 3 direction (x, y, z) Moisture Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 133.33 min IR : 500Mohm or 25Mohm × μF With rated voltage	Resistance	Whichever is smaller				
Voltage mechanical breakdown Temperature C0G Characteristics (From -55 °C to 125 °C, Capacitance change should be within ±30PPM/°C) Adhesive Strength of Termination No peeling shall be occur on the terminal electrode 500g×F, for 10±1 sec. Bending Strength of Termination Capacitance change : within ±5% or ±0.5 pF whichever is larger Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5 °C, 3±0.3sec. (preheating : 80~120 °C for 10~30sec.) Solder pot : 270±5 °C, 10±1sec. Resistance to Capacitance change : within ±2.5% or ±0.25 pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours ′ 3 direction (x, y, z) Wibration Test Capacitance change : within ±2.5% or ±0.25 pF whichever is larger Tan δ, IR : initial spec. With rated voltage With rated voltage Moisture Capacitance change : within ±7.5% or ±0.75 pF whichever is larger Q : 133.33 min IR : 500Mohm or 25Mohm × μF With rated voltage 40±2 °C, 90~95%RH, 500+12/-0hrs	Appearance	No abnormal exterior appearance	Microscop (X10)			
Temperature COG Characteristics (From -55°C to 125°C, Capacitance change should be within ±30PPM/°C) Adhesive Strength of Termination Bending Strength of Termination Bending Strength Of Termination Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger With 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 133.33 min IR : 500Mohm or 25Mohm × μF	Withstanding	No dielectric breakdown or	150% of the rated voltage			
Characteristics (From -55 °C to 125 °C, Capacitance change should be within ±30PPM/°C) Adhesive Strength of Termination No peeling shall be occur on the terminal electrode 500g×F, for 10±1 sec. Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5 °C, 3±0.3sec. (preheating : 80~120 °C for 10~30sec.) Solder pot : 270±5 °C, 10±1sec. Resistance to Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours ′3 direction (x, y, z) Wibration Test Capacitance change : within ±2.5% or ±0.75pF whichever is larger Tan δ, IR : initial spec. With rated voltage With rated voltage Moisture Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 133.33 min IR : 500Mohm or 25Mohm × μF With rated voltage 40±2 °C, 90~95%RH, 500+12/-0hrs	Voltage	mechanical breakdown				
Adhesive Strength of Termination Bending Strength Capacitance change: within ±5% or ±0.5pF whichever is larger Solderability More than 75% of terminal surface is to be soldered newly Resistance to Soldering heat Vibration Test Capacitance change: within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Vibration Test Capacitance change: within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Capacitance change: within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Capacitance change: within ±2.5% or ±0.25pF whichever is larger Tan δ, IR: initial spec. Capacitance change: within ±2.5% or ±0.75pF whichever is larger Tan δ, IR: initial spec. Capacitance change: within ±7.5% or ±0.75pF whichever is larger Q: 133.33 min IR: 500Mohm or 25Mohm × μF	Temperature	COG				
of Termination terminal electrode Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30sec.) Resistance to Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Solder pot : 270±5°C, 10±1sec. Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm Moisture Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 133.33 min IR : 500Mohm or 25Mohm × μF With rated voltage	Characteristics	(From -55℃ to 125℃, Capacitance change should be within ±30PPM/℃)				
Bending Strength Capacitance change : within ±5% or ±0.5pF whichever is larger Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30sec.) Resistance to Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Solder pot : 270±5°C, 10±1sec. Vibration Test Capacitance change : within ±2.5% or ±0.25pF whichever is larger Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours ′ 3 direction (x, y, z) Moisture Capacitance change : within ±7.5% or ±0.75pF whichever is larger Q : 133.33 min With rated voltage Resistance With rated voltage Q : 133.33 min IR : 500Mohm or 25Mohm × μF	Adhesive Strength	No peeling shall be occur on the	500g×F, for 10±1 sec.			
within $\pm 5\%$ or $\pm 0.5 p$ F whichever is larger with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly Capacitance change: Within $\pm 2.5\%$ or $\pm 0.25 p$ F whichever is larger Tan δ , IR: initial spec. Vibration Test Capacitance change: within $\pm 2.5\%$ or $\pm 0.25 p$ F whichever is larger Tan δ , IR: initial spec. Vibration Test Capacitance change: within $\pm 2.5\%$ or $\pm 0.25 p$ F whichever is larger Tan δ , IR: initial spec. Capacitance change: within $\pm 2.5\%$ or $\pm 0.25 p$ F whichever is larger Tan δ , IR: initial spec. Capacitance change: within $\pm 2.5\%$ or $\pm 0.25 p$ F whichever is larger Tan δ , IR: initial spec. Capacitance change: within $\pm 2.5\%$ or $\pm 0.25 p$ F whichever is larger Tan δ , IR: initial spec. With rated voltage With rated voltage 40±2°C, 90~95%RH, 500+12/-0hrs Resistance Q: 133.33 min IR: 500Mohm or 25Mohm × μ F	of Termination	terminal electrode				
SolderabilityMore than 75% of terminal surface is to be soldered newlySnAg3.0Cu0.5 solder 245±5 °C, 3±0.3sec. (preheating : 80~120 °C for 10~30sec.)Resistance to Soldering heatCapacitance change : within ±2.5% or ±0.25 pF whichever is larger Tan δ, IR : initial spec.Solder pot : 270±5 °C, 10±1sec.Vibration TestCapacitance change : within ±2.5% or ±0.25 pF whichever is larger Tan δ, IR : initial spec.Amplitude : 1.5mmVibration TestFrom 10Hz to 55Hz (return : 1min.) 2hours ´3 direction (x, y, z)MoistureCapacitance change : within ±7.5% or ±0.75 pF whichever is larger Q : 133.33 min IR : 500Mohm or 25Mohm × μ FWith rated voltage 40±2 °C, 90~95%RH, 500+12/-0hrs	Bending Strength	Capacitance change :	Bending to the limit (1mm)			
is to be soldered newly $ 245\pm5^{\circ}\text{C}, 3\pm0.3\text{sec.} \\ \text{(preheating: 80~120^{\circ}\text{C for }10~30\text{sec.})} $ $ \text{Resistance to} $ $ \text{Capacitance change:} \\ \text{within } \pm2.5\% \text{ or } \pm0.25^{\circ}\text{F} \text{ whichever is larger} \\ \text{Tan } \delta, \text{IR: initial spec.} $ $ \text{Capacitance change:} \\ \text{within } \pm2.5\% \text{ or } \pm0.25^{\circ}\text{F} \text{ whichever is larger} \\ \text{Tan } \delta, \text{IR: initial spec.} $ $ \text{Amplitude: 1.5mm} \\ \text{From } 10^{\circ}\text{Hz to } 55^{\circ}\text{Hz (return: 1min.)} \\ \text{Tan } \delta, \text{IR: initial spec.} $ $ \text{Moisture} \\ \text{Resistance} $ $ \text{Capacitance change:} \\ \text{within } \pm7.5\% \text{ or } \pm0.75^{\circ}\text{F} \text{ whichever is larger} \\ \text{Q: } 133.33 \text{ min} \\ \text{IR: } 500\text{Mohm or } 25\text{Mohm} \times \mu\text{F} $ $ \text{With } \frac{1}{2}^{\circ}\text{C}, 3\pm0.3\text{sec.} \\ \text{Moisture} \\ \text{Capacitance change:} \\ \text{With rated voltage} \\ 40\pm2^{\circ}\text{C}, 90~95\%^{\circ}\text{RH, } 500+12/-0\text{hrs} \\ \text{O} = 133.33 \text{ min} \\ \text{IR: } 500\text{Mohm or } 25\text{Mohm} \times \mu\text{F} $		within ±5% or ±0.5pF whichever is larger				
(preheating : $80\sim120^{\circ}\mathrm{C}$ for $10\sim30\mathrm{sec.}$) Resistance to Soldering heat Capacitance change : within $\pm2.5\%$ or $\pm0.25_{\mathrm{p}}\mathrm{F}$ whichever is larger Tan δ , IR : initial spec. Vibration Test Capacitance change : within $\pm2.5\%$ or $\pm0.25_{\mathrm{p}}\mathrm{F}$ whichever is larger Tan δ , IR : initial spec. Vibration Test Capacitance change : within $\pm2.5\%$ or $\pm0.25_{\mathrm{p}}\mathrm{F}$ whichever is larger Tan δ , IR : initial spec. Moisture Capacitance change : With rated voltage Within $\pm7.5\%$ or $\pm0.75_{\mathrm{p}}\mathrm{F}$ whichever is larger Q: $\pm0.75_{\mathrm{p}}\mathrm{F}$ whichever is larger $\pm0.95_{\mathrm{m}}\mathrm{F}$ whichever $\pm0.95_$	Solderability	More than 75% of terminal surface				
Resistance to Soldering heat Capacitance change : Solder pot : $270\pm5^{\circ}$ C, $10\pm1^{\circ}$ sec. Within $\pm2.5\%$ or $\pm0.25^{\circ}$ F whichever is larger Tan δ , IR : initial spec. Vibration Test Capacitance change : within $\pm2.5\%$ or $\pm0.25^{\circ}$ F whichever is larger Within $\pm2.5\%$ or $\pm0.25^{\circ}$ F whichever is larger Tan δ , IR : initial spec. Moisture Capacitance change : With rated voltage Within $\pm7.5\%$ or $\pm0.75^{\circ}$ F whichever is larger Q: $\pm0.75^{\circ}$ F whichever is larger $\pm0.25^{\circ}$ C, $\pm0.25^{\circ}$ F whichever is larger $\pm0.25^{\circ}$ C, $\pm0.25^{\circ}$ F whichever is larger $\pm0.25^{\circ}$ F whichever $\pm0.25^{\circ}$ F whichever is larger $\pm0.25^{\circ}$ F whichever $\pm0.25^{\circ}$ F		is to be soldered newly	245±5℃, 3±0.3sec.			
Soldering heat within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. Vibration Test Capacitance change: Amplitude: 1.5mm From $\pm 10\mathrm{Hz}$ to $\pm 55\mathrm{Hz}$ (return: 1min.) Tan $\pm 50\mathrm{mm}$, IR: initial spec. 2hours $\pm 30\mathrm{mm}$ Within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan $\pm 50\mathrm{mm}$ Ta						
Soldering heat within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. Vibration Test Capacitance change: Amplitude: 1.5mm From $\pm 10\mathrm{Hz}$ to $\pm 55\mathrm{Hz}$ (return: 1min.) Tan $\pm 50\mathrm{mm}$, IR: initial spec. 2hours $\pm 30\mathrm{mm}$ Within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan $\pm 50\mathrm{mm}$ Ta						
Tan δ , IR: initial spec. Capacitance change: within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. Amplitude: 1.5mm From $10\mathrm{Hz}$ to $55\mathrm{Hz}$ (return: 1min.) 2hours ´3 direction (x, y, z) Moisture Capacitance change: within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: 133.33 min IR: $500\mathrm{Mohm}$ or $25\mathrm{Mohm} \times \mu\mathrm{F}$	Resistance to	Capacitance change :	Solder pot : 270±5℃, 10±1sec.			
Vibration TestCapacitance change : within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR : initial spec.Amplitude : 1.5mmMoistureCapacitance change : within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q : I 33.33 min IR : S00Mohm or 25Mohm × $\mu\mathrm{F}$ With rated voltage 40 $\pm 2\mathrm{^{\circ}C}$, 90~95%RH, 500+12/-0hrs	Soldering heat	within ±2.5% or ±0.25pF whichever is larger				
within $\pm 2.5\%$ or $\pm 0.25\mathrm{pF}$ whichever is larger Tan δ , IR: initial spec. From $10\mathrm{Hz}$ to $55\mathrm{Hz}$ (return: 1min.) 2hours ´3 direction (x, y, z) Moisture Resistance within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: 133.33 min IR: 500Mohm or 25Mohm × $\mu\mathrm{F}$		Tan δ, IR : initial spec.				
Tan δ , IR: initial spec. 2hours ´3 direction (x, y, z) Moisture Capacitance change: Within ±7.5% or ±0.75 pF whichever is larger Q: 133.33 min IR: 500Mohm or 25Mohm × μ F	Vibration Test	Capacitance change :	Amplitude : 1.5mm			
MoistureCapacitance change :With rated voltageResistancewithin $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q : $\pm 40\pm2\mathrm{°C}$, $\pm 90\mathrm{°}$ 95%RH, $\pm 500\mathrm{°}$ 12/-0hrsIR :500Mohm or 25Mohm × $\pm \mathrm{°E}$		within ±2.5% or ±0.25pF whichever is larger	From 10Hz to 55Hz (return : 1min.)			
Resistance within $\pm 7.5\%$ or $\pm 0.75\mathrm{pF}$ whichever is larger Q: 133.33 min IR: 500Mohm or 25Mohm × $\mu\mathrm{F}$ $40\pm2^{\circ}\mathrm{C}$, 90~95%RH, 500+12/-0hrs		Tan δ, IR : initial spec.	2hours ´ 3 direction (x, y, z)			
Q: 133.33 min IR: 500Mohm or 25Mohm × μ F	Moisture	Capacitance change :	· · · ·			
IR : 500Mohm or 25Mohm × μ F	Resistance	within ±7.5% or ±0.75pF whichever is larger	_			
		Q: 133.33 min				
Whichever is smaller		IR: 500Mohm or 25Mohm × μ F				
		Whichever is smaller				
High Temperature Capacitance change : With 150% of the rated voltage	High Temperature	Capacitance change :	With 150% of the rated voltage			
Resistance within ±3% or ±0.3pF whichever is larger Max. operating temperature	Resistance	within ±3% or ±0.3pF whichever is larger				
Q: 300 min 1000+48/-0hrs		Q: 300 min	1000+48/-0hrs			
IR: 1,000Mohm or 50Mohm × μ F		IR: 1,000Mohm or 50Mohm × μ F				
Whichever is smaller		Whichever is smaller				
Temperature Capacitance change : 1 cycle condition	Temperature	Capacitance change :	1 cycle condition			
	Cycling	-	· ·			
Tan δ , IR: initial spec. \rightarrow Max. operating temperature \rightarrow 25°C	- -	I -				
		·				
5 cycle test			5 cycle test			

^{*} The reliability test condition can be replaced by the corresponding accelerated test condition.

D. Recommended Soldering method:

Reflow (Reflow Peak Temperature: 260+0/-5°C, 10sec. Max)

A Product specifications included in the specifications are effective as of March 1, 2013.

Please be advised that they are standard product specifications for reference only.

We may change, modify or discontinue the product specifications without notice at any time.

So, you need to approve the product specifications before placing an order.

Should you have any question regarding the product specifications,

please contact our sales personnel or application engineers.

- Disclaimer & Limitation of Use and Application -

The products listed in this Specification sheet are **NOT** designed and manufactured for any use and applications set forth below.

Please note that any misuse of the products deviating from products specifications or information provided in this Spec sheet may cause serious property damages or personal injury.

We will **NOT** be liable for any damages resulting from any misuse of the products, specifically including using the products for high reliability applications as listed below.

If you have any questions regarding this 'Limitation of Use and Application', you should first contact our sales personnel or application engineers.

- ① Aerospace/Aviation equipment
- ② Automotive or Transportation equipment (vehicles, trains, ships, etc)
- 3 Medical equipment
- Military equipment
- 5 Disaster prevention/crime prevention equipment
- Any other applications with the same as or similar complexity or reliability to the applications set forth above.